Do you want to publish a course? Click here

Context-Interactive Pre-Training for Document Machine Translation

قبل السياق - التفاعلية قبل التدريب لترجمة آلة المستند

309   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Document machine translation aims to translate the source sentence into the target language in the presence of additional contextual information. However, it typically suffers from a lack of doc-level bilingual data. To remedy this, here we propose a simple yet effective context-interactive pre-training approach, which targets benefiting from external large-scale corpora. The proposed model performs inter sentence generation to capture the cross-sentence dependency within the target document, and cross sentence translation to make better use of valuable contextual information. Comprehensive experiments illustrate that our approach can achieve state-of-the-art performance on three benchmark datasets, which significantly outperforms a variety of baselines.



References used
https://aclanthology.org/
rate research

Read More

Pre-training (PT) and back-translation (BT) are two simple and powerful methods to utilize monolingual data for improving the model performance of neural machine translation (NMT). This paper takes the first step to investigate the complementarity be tween PT and BT. We introduce two probing tasks for PT and BT respectively and find that PT mainly contributes to the encoder module while BT brings more benefits to the decoder. Experimental results show that PT and BT are nicely complementary to each other, establishing state-of-the-art performances on the WMT16 English-Romanian and English-Russian benchmarks. Through extensive analyses on sentence originality and word frequency, we also demonstrate that combining Tagged BT with PT is more helpful to their complementarity, leading to better translation quality. Source code is freely available at https://github.com/SunbowLiu/PTvsBT.
Document-level neural machine translation (NMT) has proven to be of profound value for its effectiveness on capturing contextual information. Nevertheless, existing approaches 1) simply introduce the representations of context sentences without expli citly characterizing the inter-sentence reasoning process; and 2) feed ground-truth target contexts as extra inputs at the training time, thus facing the problem of exposure bias. We approach these problems with an inspiration from human behavior -- human translators ordinarily emerge a translation draft in their mind and progressively revise it according to the reasoning in discourse. To this end, we propose a novel Multi-Hop Transformer (MHT) which offers NMT abilities to explicitly model the human-like draft-editing and reasoning process. Specifically, our model serves the sentence-level translation as a draft and properly refines its representations by attending to multiple antecedent sentences iteratively. Experiments on four widely used document translation tasks demonstrate that our method can significantly improve document-level translation performance and can tackle discourse phenomena, such as coreference error and the problem of polysemy.
Code summarization and generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART's effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., if block inside an else block is equivalent to else if block) that are crucial to program semantics and thus excels even with limited annotations.
Pre-trained Transformer language models (LM) have become go-to text representation encoders. Prior research fine-tunes deep LMs to encode text sequences such as sentences and passages into single dense vector representations for efficient text compar ison and retrieval. However, dense encoders require a lot of data and sophisticated techniques to effectively train and suffer in low data situations. This paper finds a key reason is that standard LMs' internal attention structure is not ready-to-use for dense encoders, which needs to aggregate text information into the dense representation. We propose to pre-train towards dense encoder with a novel Transformer architecture, Condenser, where LM prediction CONditions on DENSE Representation. Our experiments show Condenser improves over standard LM by large margins on various text retrieval and similarity tasks.
Recent researches show that pre-trained models (PTMs) are beneficial to Chinese Word Segmentation (CWS). However, PTMs used in previous works usually adopt language modeling as pre-training tasks, lacking task-specific prior segmentation knowledge an d ignoring the discrepancy between pre-training tasks and downstream CWS tasks. In this paper, we propose a CWS-specific pre-trained model MetaSeg, which employs a unified architecture and incorporates meta learning algorithm into a multi-criteria pre-training task. Empirical results show that MetaSeg could utilize common prior segmentation knowledge from different existing criteria and alleviate the discrepancy between pre-trained models and downstream CWS tasks. Besides, MetaSeg can achieve new state-of-the-art performance on twelve widely-used CWS datasets and significantly improve model performance in low-resource settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا