Do you want to publish a course? Click here

Dense retrieval has shown great success for passage ranking in English. However, its effectiveness for non-English languages remains unexplored due to limitation in training resources. In this work, we explore different transfer techniques for docume nt ranking from English annotations to non-English languages. Our experiments reveal that zero-shot model-based transfer using mBERT improves search quality. We find that weakly-supervised target language transfer is competitive compared to generation-based target language transfer, which requires translation models.
Pre-trained Transformer language models (LM) have become go-to text representation encoders. Prior research fine-tunes deep LMs to encode text sequences such as sentences and passages into single dense vector representations for efficient text compar ison and retrieval. However, dense encoders require a lot of data and sophisticated techniques to effectively train and suffer in low data situations. This paper finds a key reason is that standard LMs' internal attention structure is not ready-to-use for dense encoders, which needs to aggregate text information into the dense representation. We propose to pre-train towards dense encoder with a novel Transformer architecture, Condenser, where LM prediction CONditions on DENSE Representation. Our experiments show Condenser improves over standard LM by large margins on various text retrieval and similarity tasks.
We present an efficient training approach to text retrieval with dense representations that applies knowledge distillation using the ColBERT late-interaction ranking model. Specifically, we propose to transfer the knowledge from a bi-encoder teacher to a student by distilling knowledge from ColBERT's expressive MaxSim operator into a simple dot product. The advantage of the bi-encoder teacher--student setup is that we can efficiently add in-batch negatives during knowledge distillation, enabling richer interactions between teacher and student models. In addition, using ColBERT as the teacher reduces training cost compared to a full cross-encoder. Experiments on the MS MARCO passage and document ranking tasks and data from the TREC 2019 Deep Learning Track demonstrate that our approach helps models learn robust representations for dense retrieval effectively and efficiently.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا