تظهر الأبحاث الحديثة أن النماذج المدربة مسبقا (PTMS) مفيدة تجزئة الكلمات الصينية (CWS).ومع ذلك، فإن PTMS المستخدمة في الأعمال السابقة عادة ما تعتمد نمذجة اللغة كامرأة تدريبية مسبقا، تفتقر إلى معرفة تجزئة مسبقة خاصة بمهام المهام وتجاهل التناقض بين مهام ما قبل التدريب ومهام CWS المصب.في هذه الورقة، نقترح MetASE مطلقا مدربا مسبقا مسبقا CWS، والذي توظف هندسة موحدة ويشمل خوارزمية التعلم المعتوية في مهمة ما قبل التدريب متعدد المعايير.تظهر النتائج التجريبية أن METASEG يمكن أن تستخدم معرفة تجزئة مسبقة مشتركة من المعايير الحالية المختلفة وتخفيف التناقض بين النماذج المدربة مسبقا ومهام CWS المصب.علاوة على ذلك، يمكن أن يحقق MetASEG أداء جديدا على أحدث بيانات CWS المستخدمة على نطاق واسع وتحسين أداء النموذج بشكل كبير في إعدادات الموارد المنخفضة.
Recent researches show that pre-trained models (PTMs) are beneficial to Chinese Word Segmentation (CWS). However, PTMs used in previous works usually adopt language modeling as pre-training tasks, lacking task-specific prior segmentation knowledge and ignoring the discrepancy between pre-training tasks and downstream CWS tasks. In this paper, we propose a CWS-specific pre-trained model MetaSeg, which employs a unified architecture and incorporates meta learning algorithm into a multi-criteria pre-training task. Empirical results show that MetaSeg could utilize common prior segmentation knowledge from different existing criteria and alleviate the discrepancy between pre-trained models and downstream CWS tasks. Besides, MetaSeg can achieve new state-of-the-art performance on twelve widely-used CWS datasets and significantly improve model performance in low-resource settings.
References used
https://aclanthology.org/
Recent state-of-the-art (SOTA) effective neural network methods and fine-tuning methods based on pre-trained models (PTM) have been used in Chinese word segmentation (CWS), and they achieve great results. However, previous works focus on training the
In parataxis languages like Chinese, word meanings are constructed using specific word-formations, which can help to disambiguate word senses. However, such knowledge is rarely explored in previous word sense disambiguation (WSD) methods. In this pap
This paper describes FBK's system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The train
The rise of pre-trained language models has yielded substantial progress in the vast majority of Natural Language Processing (NLP) tasks. However, a generic approach towards the pre-training procedure can naturally be sub-optimal in some cases. Parti
Recently, pre-trained language representation models such as BERT and RoBERTa have achieved significant results in a wide range of natural language processing (NLP) tasks, however, it requires extremely high computational cost. Curriculum Learning (C