أثبتت الترجمة الآلية النموذجية على مستوى المستند (NMT) أنها ذات قيمة عميقة لفعاليتها في التقاط المعلومات السياقية. ومع ذلك، فإن الأساليب الحالية 1) تعرض ببساطة تمثيل أحكام السياق دون تمييز عملية التفكير بين الجملة؛ و 2) تغذية السياقات المستهدفة في الحقيقة كدخلات إضافية في وقت التدريب، وبالتالي تواجه مشكلة تحيز التعرض. ونحن نقترب من هذه المشاكل مع إلهام من السلوك البشري - المترجمين البشري يظهر عادة مشروع ترجمة في أذهانهم وتنقيحها تدريجيا وفقا للمنطق في الخطاب. تحقيقا لهذه الغاية، نقترح محول رواية متعددة القفز (MHT) الذي يوفر قدرات NMT على نموذج عملية التحرير والتفكير الذي يشبه الإنسان بشكل صريح. على وجه التحديد، يخدم نموذجنا الترجمة على مستوى الجملة كمسودة ويحدد خصوصياتها بشكل صحيح من خلال حضور جمل متعددة غير متجانسة تكرارا. توضح التجارب على أربعة مهام ترجمة مستندات مستعملة على نطاق واسع أن طريقتنا يمكن أن تحسن بشكل كبير من أداء الترجمة على مستوى المستندات ويمكنها معالجة ظواهر الخطاب، مثل خطأ COMARACARE ومشكلة Polysemy.
Document-level neural machine translation (NMT) has proven to be of profound value for its effectiveness on capturing contextual information. Nevertheless, existing approaches 1) simply introduce the representations of context sentences without explicitly characterizing the inter-sentence reasoning process; and 2) feed ground-truth target contexts as extra inputs at the training time, thus facing the problem of exposure bias. We approach these problems with an inspiration from human behavior -- human translators ordinarily emerge a translation draft in their mind and progressively revise it according to the reasoning in discourse. To this end, we propose a novel Multi-Hop Transformer (MHT) which offers NMT abilities to explicitly model the human-like draft-editing and reasoning process. Specifically, our model serves the sentence-level translation as a draft and properly refines its representations by attending to multiple antecedent sentences iteratively. Experiments on four widely used document translation tasks demonstrate that our method can significantly improve document-level translation performance and can tackle discourse phenomena, such as coreference error and the problem of polysemy.
References used
https://aclanthology.org/
Recently a number of approaches have been proposed to improve translation performance for document-level neural machine translation (NMT). However, few are focusing on the subject of lexical translation consistency. In this paper we apply one transla
The choice of parameter sharing strategy in multilingual machine translation models determines how optimally parameter space is used and hence, directly influences ultimate translation quality. Inspired by linguistic trees that show the degree of rel
Document machine translation aims to translate the source sentence into the target language in the presence of additional contextual information. However, it typically suffers from a lack of doc-level bilingual data. To remedy this, here we propose a
It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either expl
Recent studies emphasize the need of document context in human evaluation of machine translations, but little research has been done on the impact of user interfaces on annotator productivity and the reliability of assessments. In this work, we compa