Do you want to publish a course? Click here

Condenser: a Pre-training Architecture for Dense Retrieval

المكثف: بنية ما قبل التدريب لاسترجاع كثيف

336   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Pre-trained Transformer language models (LM) have become go-to text representation encoders. Prior research fine-tunes deep LMs to encode text sequences such as sentences and passages into single dense vector representations for efficient text comparison and retrieval. However, dense encoders require a lot of data and sophisticated techniques to effectively train and suffer in low data situations. This paper finds a key reason is that standard LMs' internal attention structure is not ready-to-use for dense encoders, which needs to aggregate text information into the dense representation. We propose to pre-train towards dense encoder with a novel Transformer architecture, Condenser, where LM prediction CONditions on DENSE Representation. Our experiments show Condenser improves over standard LM by large margins on various text retrieval and similarity tasks.



References used
https://aclanthology.org/
rate research

Read More

Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computational cost mainly from cross-modal attention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by extracting pre-cached feature indexes offline, and employing instant dot-product matching online, which significantly speeds up retrieval process. In fact, our LightningDOT achieves superior performance across mainstream ITR benchmarks such as Flickr30k and COCO datasets, outperforming existing pre-trained models that consume 1000 times magnitude of computational hours using the same features.
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retri eval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call mDPR''. Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse--dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
Dense retrieval has shown great success for passage ranking in English. However, its effectiveness for non-English languages remains unexplored due to limitation in training resources. In this work, we explore different transfer techniques for docume nt ranking from English annotations to non-English languages. Our experiments reveal that zero-shot model-based transfer using mBERT improves search quality. We find that weakly-supervised target language transfer is competitive compared to generation-based target language transfer, which requires translation models.
Code summarization and generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART's effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., if block inside an else block is equivalent to else if block) that are crucial to program semantics and thus excels even with limited annotations.
Recent researches show that pre-trained models (PTMs) are beneficial to Chinese Word Segmentation (CWS). However, PTMs used in previous works usually adopt language modeling as pre-training tasks, lacking task-specific prior segmentation knowledge an d ignoring the discrepancy between pre-training tasks and downstream CWS tasks. In this paper, we propose a CWS-specific pre-trained model MetaSeg, which employs a unified architecture and incorporates meta learning algorithm into a multi-criteria pre-training task. Empirical results show that MetaSeg could utilize common prior segmentation knowledge from different existing criteria and alleviate the discrepancy between pre-trained models and downstream CWS tasks. Besides, MetaSeg can achieve new state-of-the-art performance on twelve widely-used CWS datasets and significantly improve model performance in low-resource settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا