Do you want to publish a course? Click here

Representations from large pretrained models such as BERT encode a range of features into monolithic vectors, affording strong predictive accuracy across a range of downstream tasks. In this paper we explore whether it is possible to learn disentangl ed representations by identifying existing subnetworks within pretrained models that encode distinct, complementary aspects. Concretely, we learn binary masks over transformer weights or hidden units to uncover subsets of features that correlate with a specific factor of variation; this eliminates the need to train a disentangled model from scratch for a particular task. We evaluate this method with respect to its ability to disentangle representations of sentiment from genre in movie reviews, toxicity from dialect in Tweets, and syntax from semantics. By combining masking with magnitude pruning we find that we can identify sparse subnetworks within BERT that strongly encode particular aspects (e.g., semantics) while only weakly encoding others (e.g., syntax). Moreover, despite only learning masks, disentanglement-via-masking performs as well as --- and often better than ---previously proposed methods based on variational autoencoders and adversarial training.
Abstract Meaning Representation (AMR) is a graphical meaning representation language designed to represent propositional information about argument structure. However, at present it is unable to satisfyingly represent non-veridical intensional contex ts, often licensing inappropriate inferences. In this paper, we show how to resolve the problem of non-veridicality without appealing to layered graphs through a mapping from AMRs into Simply-Typed Lambda Calculus (STLC). At least for some cases, this requires the introduction of a new role :content which functions as an intensional operator. The translation proposed is inspired by the formal linguistics literature on the event semantics of attitude reports. Next, we address the interaction of quantifier scope and intensional operators in so-called de re/de dicto ambiguities. We adopt a scope node from the literature and provide an explicit multidimensional semantics utilizing Cooper storage which allows us to derive the de re and de dicto scope readings as well as intermediate scope readings which prove difficult for accounts without a scope node.
We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g. RoBERTa) and generation models (e.g. BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.
Much of the progress in contemporary NLP has come from learning representations, such as masked language model (MLM) contextual embeddings, that turn challenging problems into simple classification tasks. But how do we quantify and explain this effec t? We adapt general tools from computational learning theory to fit the specific characteristics of text datasets and present a method to evaluate the compatibility between representations and tasks. Even though many tasks can be easily solved with simple bag-of-words (BOW) representations, BOW does poorly on hard natural language inference tasks. For one such task we find that BOW cannot distinguish between real and randomized labelings, while pre-trained MLM representations show 72x greater distinction between real and random labelings than BOW. This method provides a calibrated, quantitative measure of the difficulty of a classification-based NLP task, enabling comparisons between representations without requiring empirical evaluations that may be sensitive to initializations and hyperparameters. The method provides a fresh perspective on the patterns in a dataset and the alignment of those patterns with specific labels.
We address the sampling bias and outlier issues in few-shot learning for event detection, a subtask of information extraction. We propose to model the relations between training tasks in episodic few-shot learning by introducing cross-task prototypes . We further propose to enforce prediction consistency among classifiers across tasks to make the model more robust to outliers. Our extensive experiment shows a consistent improvement on three few-shot learning datasets. The findings suggest that our model is more robust when labeled data of novel event types is limited. The source code is available at http://github.com/laiviet/fsl-proact.
The lack of description of a given program code acts as a big hurdle to those developers new to the code base for its understanding. To tackle this problem, previous work on code summarization, the task of automatically generating code description gi ven a piece of code reported that an auxiliary learning model trained to produce API (Application Programming Interface) embeddings showed promising results when applied to a downstream, code summarization model. However, different codes having different summaries can have the same set of API sequences. If we train a model to generate summaries given an API sequence, the model will not be able to learn effectively. Nevertheless, we note that the API sequence can still be useful and has not been actively utilized. This work proposes a novel multi-task approach that simultaneously trains two similar tasks: 1) summarizing a given code (code to summary), and 2) summarizing a given API sequence (API sequence to summary). We propose a novel code-level encoder based on BERT capable of expressing the semantics of code, and obtain representations for every line of code. Our work is the first code summarization work that utilizes a natural language-based contextual pre-trained language model in its encoder. We evaluate our approach using two common datasets (Java and Python) that have been widely used in previous studies. Our experimental results show that our multi-task approach improves over the baselines and achieves the new state-of-the-art.
In Visual Question Answering (VQA), existing bilinear methods focus on the interaction between images and questions. As a result, the answers are either spliced into the questions or utilized as labels only for classification. On the other hand, tril inear models such as the CTI model efficiently utilize the inter-modality information between answers, questions, and images, while ignoring intra-modality information. Inspired by this observation, we propose a new trilinear interaction framework called MIRTT (Learning Multimodal Interaction Representations from Trilinear Transformers), incorporating the attention mechanisms for capturing inter-modality and intra-modality relationships. Moreover, we design a two-stage workflow where a bilinear model reduces the free-form, open-ended VQA problem into a multiple-choice VQA problem. Furthermore, to obtain accurate and generic multimodal representations, we pre-train MIRTT with masked language prediction. Our method achieves state-of-the-art performance on the Visual7W Telling task and VQA-1.0 Multiple Choice task and outperforms bilinear baselines on the VQA-2.0, TDIUC and GQA datasets.
This paper introduces a novel approach to learn visually grounded meaning representations of words as low-dimensional node embeddings on an underlying graph hierarchy. The lower level of the hierarchy models modality-specific word representations, co nditioned to another modality, through dedicated but communicating graphs, while the higher level puts these representations together on a single graph to learn a representation jointly from both modalities. The topology of each graph models similarity relations among words, and is estimated jointly with the graph embedding. The assumption underlying this model is that words sharing similar meaning correspond to communities in an underlying graph in a low-dimensional space. We named this model Hierarchical Multi-Modal Similarity Graph Embedding (HM-SGE). Experimental results validate the ability of HM-SGE to simulate human similarity judgments and concept categorization, outperforming the state of the art.
Determining whether two documents were composed by the same author, also known as authorship verification, has traditionally been tackled using statistical methods. Recently, authorship representations learned using neural networks have been found to outperform alternatives, particularly in large-scale settings involving hundreds of thousands of authors. But do such representations learned in a particular domain transfer to other domains? Or are these representations inherently entangled with domain-specific features? To study these questions, we conduct the first large-scale study of cross-domain transfer for authorship verification considering zero-shot transfers involving three disparate domains: Amazon reviews, fanfiction short stories, and Reddit comments. We find that although a surprising degree of transfer is possible between certain domains, it is not so successful between others. We examine properties of these domains that influence generalization and propose simple but effective methods to improve transfer.
Natural language processing (NLP) is often the backbone of today's systems for user interactions, information retrieval and others. Many of such NLP applications rely on specialized learned representations (e.g. neural word embeddings, topic models) that improve the ability to reason about the relationships between documents of a corpus. Paired with the progress in learned representations, the similarity metrics used to compare representations of documents are also evolving, with numerous proposals differing in computation time or interpretability. In this paper we propose an extension to a specific emerging hybrid document distance metric which combines topic models and word embeddings: the Hierarchical Optimal Topic Transport (HOTT). In specific, we extend HOTT by using context-enhanced word representations. We provide a validation of our approach on public datasets, using the language model BERT for a document categorization task. Results indicate competitive performance of the extended HOTT metric. We furthermore apply the HOTT metric and its extension to support educational media research, with a retrieval task of matching topics in German curricula to educational textbooks passages, along with offering an auxiliary explanatory document representing the dominant topic of the retrieved document. In a user study, our explanation method is preferred over regular topic keywords.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا