Do you want to publish a course? Click here

Learning grounded word meaning representations on similarity graphs

تعلم كلمة أساسية تعني التمثيلات على الرسوم البيانية التشابه

543   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper introduces a novel approach to learn visually grounded meaning representations of words as low-dimensional node embeddings on an underlying graph hierarchy. The lower level of the hierarchy models modality-specific word representations, conditioned to another modality, through dedicated but communicating graphs, while the higher level puts these representations together on a single graph to learn a representation jointly from both modalities. The topology of each graph models similarity relations among words, and is estimated jointly with the graph embedding. The assumption underlying this model is that words sharing similar meaning correspond to communities in an underlying graph in a low-dimensional space. We named this model Hierarchical Multi-Modal Similarity Graph Embedding (HM-SGE). Experimental results validate the ability of HM-SGE to simulate human similarity judgments and concept categorization, outperforming the state of the art.



References used
https://aclanthology.org/
rate research

Read More

This paper introduces the system description of the hub team, which explains the related work and experimental results of our team's participation in SemEval 2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). The da ta of this shared task is mainly some cross-language or multi-language sentence pair corpus. The languages covered in the corpus include English, Chinese, French, Russian, and Arabic. The task goal is to judge whether the same words in these sentence pairs have the same meaning in the sentence. This can be seen as a task of binary classification of sentence pairs. What we need to do is to use our method to determine as accurately as possible the meaning of the words in a sentence pair are the same or different. The model used by our team is mainly composed of RoBERTa and Tf-Idf algorithms. The result evaluation index of task submission is the F1 score. We only participated in the English language task. The final score of the test set prediction results submitted by our team was 84.60.
The design of expressive representations of entities and relations in a knowledge graph is an important endeavor. While many of the existing approaches have primarily focused on learning from relational patterns and structural information, the intrin sic complexity of KG entities has been more or less overlooked. More concretely, we hypothesize KG entities may be more complex than we think, i.e., an entity may wear many hats and relational triplets may form due to more than a single reason. To this end, this paper proposes to learn disentangled representations of KG entities - a new method that disentangles the inner latent properties of KG entities. Our disentangled process operates at the graph level and a neighborhood mechanism is leveraged to disentangle the hidden properties of each entity. This disentangled representation learning approach is model agnostic and compatible with canonical KG embedding approaches. We conduct extensive experiments on several benchmark datasets, equipping a variety of models (DistMult, SimplE, and QuatE) with our proposed disentangling mechanism. Experimental results demonstrate that our proposed approach substantially improves performance on key metrics.
Due to its great power in modeling non-Euclidean data like graphs or manifolds, deep learning on graph techniques (i.e., Graph Neural Networks (GNNs)) have opened a new door to solving challenging graph-related NLP problems. There has seen a surge of interests in applying deep learning on graph techniques to NLP, and has achieved considerable success in many NLP tasks, ranging from classification tasks like sentence classification, semantic role labeling and relation extraction, to generation tasks like machine translation, question generation and summarization. Despite these successes, deep learning on graphs for NLP still face many challenges, including automatically transforming original text sequence data into highly graph-structured data, and effectively modeling complex data that involves mapping between graph-based inputs and other highly structured output data such as sequences, trees, and graph data with multi-types in both nodes and edges. This tutorial will cover relevant and interesting topics on applying deep learning on graph techniques to NLP, including automatic graph construction for NLP, graph representation learning for NLP, advanced GNN based models (e.g., graph2seq, graph2tree, and graph2graph) for NLP, and the applications of GNNs in various NLP tasks (e.g., machine translation, natural language generation, information extraction and semantic parsing). In addition, hands-on demonstration sessions will be included to help the audience gain practical experience on applying GNNs to solve challenging NLP problems using our recently developed open source library -- Graph4NLP, the first library for researchers and practitioners for easy use of GNNs for various NLP tasks.
Word meaning is notoriously difficult to capture, both synchronically and diachronically. In this paper, we describe the creation of the largest resource of graded contextualized, diachronic word meaning annotation in four different languages, based on 100,000 human semantic proximity judgments. We describe in detail the multi-round incremental annotation process, the choice for a clustering algorithm to group usages into senses, and possible -- diachronic and synchronic -- uses for this dataset.
Most recent studies for relation extraction (RE) leverage the dependency tree of the input sentence to incorporate syntax-driven contextual information to improve model performance, with little attention paid to the limitation where high-quality depe ndency parsers in most cases unavailable, especially for in-domain scenarios. To address this limitation, in this paper, we propose attentive graph convolutional networks (A-GCN) to improve neural RE methods with an unsupervised manner to build the context graph, without relying on the existence of a dependency parser. Specifically, we construct the graph from n-grams extracted from a lexicon built from pointwise mutual information (PMI) and apply attention over the graph. Therefore, different word pairs from the contexts within and across n-grams are weighted in the model and facilitate RE accordingly. Experimental results with further analyses on two English benchmark datasets for RE demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on both datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا