Do you want to publish a course? Click here

Intensionalizing Abstract Meaning Representations: Non-Veridicality and Scope

التعهدات المعنى التجريدي تعني الممثلين: غير التحقق

143   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Meaning Representation (AMR) is a graphical meaning representation language designed to represent propositional information about argument structure. However, at present it is unable to satisfyingly represent non-veridical intensional contexts, often licensing inappropriate inferences. In this paper, we show how to resolve the problem of non-veridicality without appealing to layered graphs through a mapping from AMRs into Simply-Typed Lambda Calculus (STLC). At least for some cases, this requires the introduction of a new role :content which functions as an intensional operator. The translation proposed is inspired by the formal linguistics literature on the event semantics of attitude reports. Next, we address the interaction of quantifier scope and intensional operators in so-called de re/de dicto ambiguities. We adopt a scope node from the literature and provide an explicit multidimensional semantics utilizing Cooper storage which allows us to derive the de re and de dicto scope readings as well as intermediate scope readings which prove difficult for accounts without a scope node.

References used
https://aclanthology.org/

rate research

Read More

Abstract Meaning Representation (AMR) is a sentence-level meaning representation based on predicate argument structure. One of the challenges we find in AMR parsing is to capture the structure of complex sentences which expresses the relation between predicates. Knowing the core part of the sentence structure in advance may be beneficial in such a task. In this paper, we present a list of dependency patterns for English complex sentence constructions designed for AMR parsing. With a dedicated pattern matcher, all occurrences of complex sentence constructions are retrieved from an input sentence. While some of the subordinators have semantic ambiguities, we deal with this problem through training classification models on data derived from AMR and Wikipedia corpus, establishing a new baseline for future works. The developed complex sentence patterns and the corresponding AMR descriptions will be made public.
This paper introduces a novel approach to learn visually grounded meaning representations of words as low-dimensional node embeddings on an underlying graph hierarchy. The lower level of the hierarchy models modality-specific word representations, co nditioned to another modality, through dedicated but communicating graphs, while the higher level puts these representations together on a single graph to learn a representation jointly from both modalities. The topology of each graph models similarity relations among words, and is estimated jointly with the graph embedding. The assumption underlying this model is that words sharing similar meaning correspond to communities in an underlying graph in a low-dimensional space. We named this model Hierarchical Multi-Modal Similarity Graph Embedding (HM-SGE). Experimental results validate the ability of HM-SGE to simulate human similarity judgments and concept categorization, outperforming the state of the art.
Neural networks are the state-of-the-art method of machine learning for many problems in NLP. Their success in machine translation and other NLP tasks is phenomenal, but their interpretability is challenging. We want to find out how neural networks r epresent meaning. In order to do this, we propose to examine the distribution of meaning in the vector space representation of words in neural networks trained for NLP tasks. Furthermore, we propose to consider various theories of meaning in the philosophy of language and to find a methodology that would enable us to connect these areas.
Through examining some prophetic texts which include numbers, following its explanation and analyzing the scholars`statements (WORDS); this research tries to collect the evidence which were mentioned by the scholars who prefer to take the number`s metaphorical and rhetorical meaning in the prophetic text rather than its real exclusive one. The research ,also shows the rhetorical clues which the number has been used for its own in those texts to have better and nearer understanding for the prophetic text.
The field of NLP has made substantial progress in building meaning representations. However, an important aspect of linguistic meaning, social meaning, has been largely overlooked. We introduce the concept of social meaning to NLP and discuss how insights from sociolinguistics can inform work on representation learning in NLP. We also identify key challenges for this new line of research.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا