لقد جاء الكثير من التقدم المحرز في NLP المعاصر من تمثيلات التعلم، مثل Embeddings Manked Language Model (MLM)، يتحول إلى مشاكل تحديا في مهام التصنيف البسيطة. ولكن كيف يمكننا تحديد وتفسير هذا التأثير؟ نحن نتكيف مع أدوات عامة من نظرية التعلم الحاسوبية لتناسب الخصائص المحددة لمجموعات البيانات النصية وتقديم طريقة لتقييم التوافق بين التمثيلات والمهام. على الرغم من أن العديد من المهام يمكن حلها بسهولة مع تمثيلات بسيطة من الكلمات (القوس)، فإن القوس لا ضعيف على مهام الاستدلال باللغة الطبيعية الثابت. لأحد هذه المهمة، نجد أن القوس لا يستطيع التمييز بين اللقطات الحقيقية والعشوائية، في حين تظهر تمثيلات الامتيازات المدربة مسبقا تمييزا أكبر بنسبة 72x بين وضع علامات حقيقية وعشوائية من القوس. توفر هذه الطريقة مقياسا معايرة وكمية لصعوبة مهمة NLP القائمة على التصنيف، مما يتيح المقارنات بين التمثيلات دون الحاجة إلى تقييمات تجريبية قد تكون حساسة للتهيئة والفظايات. توفر الطريقة منظورا جديدا على الأنماط الموجودة في مجموعة بيانات ومحاذاة تلك الأنماط مع ملصقات محددة.
Much of the progress in contemporary NLP has come from learning representations, such as masked language model (MLM) contextual embeddings, that turn challenging problems into simple classification tasks. But how do we quantify and explain this effect? We adapt general tools from computational learning theory to fit the specific characteristics of text datasets and present a method to evaluate the compatibility between representations and tasks. Even though many tasks can be easily solved with simple bag-of-words (BOW) representations, BOW does poorly on hard natural language inference tasks. For one such task we find that BOW cannot distinguish between real and randomized labelings, while pre-trained MLM representations show 72x greater distinction between real and random labelings than BOW. This method provides a calibrated, quantitative measure of the difficulty of a classification-based NLP task, enabling comparisons between representations without requiring empirical evaluations that may be sensitive to initializations and hyperparameters. The method provides a fresh perspective on the patterns in a dataset and the alignment of those patterns with specific labels.
References used
https://aclanthology.org/
Lexical normalization, in addition to word segmentation and part-of-speech tagging, is a fundamental task for Japanese user-generated text processing. In this paper, we propose a text editing model to solve the three task jointly and methods of pseud
Natural language processing systems such as dialogue agents should be able to reason about other people's beliefs, intentions and desires. This capability, called theory of mind (ToM), is crucial, as it allows a model to predict and interpret the nee
Representations from large pretrained models such as BERT encode a range of features into monolithic vectors, affording strong predictive accuracy across a range of downstream tasks. In this paper we explore whether it is possible to learn disentangl
Learning a good latent representation is essential for text style transfer, which generates a new sentence by changing the attributes of a given sentence while preserving its content. Most previous works adopt disentangled latent representation learn
We motivate and propose a suite of simple but effective improvements for concept-to-text generation called SAPPHIRE: Set Augmentation and Post-hoc PHrase Infilling and REcombination. We demonstrate their effectiveness on generative commonsense reason