Do you want to publish a course? Click here

This paper describes our submission for the shared task on Unsupervised MT and Very Low Resource Supervised MT at WMT 2021. We submitted systems for two language pairs: German ↔ Upper Sorbian (de ↔ hsb) and German-Lower Sorbian (de ↔ dsb). For de ↔ h sb, we pretrain our system using MASS (Masked Sequence to Sequence) objective and then finetune using iterative back-translation. Final finetunng is performed using the parallel data provided for translation objective. For de ↔ dsb, no parallel data is provided in the task, we use final de ↔ hsb model as initialization of the de ↔ dsb model and train it further using iterative back-translation, using the same vocabulary as used in the de ↔ hsb model.
We describe the EdinSaar submission to the shared task of Multilingual Low-Resource Translation for North Germanic Languages at the Sixth Conference on Machine Translation (WMT2021). We submit multilingual translation models for translations to/from Icelandic (is), Norwegian-Bokmal (nb), and Swedish (sv). We employ various experimental approaches, including multilingual pre-training, back-translation, fine-tuning, and ensembling. In most translation directions, our models outperform other submitted systems.
This paper describes Charles University sub-mission for Terminology translation shared task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over all translation quality. We competed in English-French language pair. Our approach is based on providing the desired translations alongside the input sentence and training the model to use these provided terms. We lemmatize the terms both during the training and inference, to allow the model to learn how to produce correct surface forms of the words, when they differ from the forms provided in the terminology database.
This paper describes TenTrans' submission to WMT21 Multilingual Low-Resource Translation shared task for the Romance language pairs. This task focuses on improving translation quality from Catalan to Occitan, Romanian and Italian, with the assistance of related high-resource languages. We mainly utilize back-translation, pivot-based methods, multilingual models, pre-trained model fine-tuning, and in-domain knowledge transfer to improve the translation quality. On the test set, our best-submitted system achieves an average of 43.45 case-sensitive BLEU scores across all low-resource pairs. Our data, code, and pre-trained models used in this work are available in TenTrans evaluation examples.
How would you explain Bill Gates to a German? He is associated with founding a company in the United States, so perhaps the German founder Carl Benz could stand in for Gates in those contexts. This type of translation is called adaptation in the tran slation community. Until now, this task has not been done computationally. Automatic adaptation could be used in natural language processing for machine translation and indirectly for generating new question answering datasets and education. We propose two automatic methods and compare them to human results for this novel NLP task. First, a structured knowledge base adapts named entities using their shared properties. Second, vector-arithmetic and orthogonal embedding mappings methods identify better candidates, but at the expense of interpretable features. We evaluate our methods through a new dataset of human adaptations.
Reproducible benchmarks are crucial in driving progress of machine translation research. However, existing machine translation benchmarks have been mostly limited to high-resource or well-represented languages. Despite an increasing interest in low-r esource machine translation, there are no standardized reproducible benchmarks for many African languages, many of which are used by millions of speakers but have less digitized textual data. To tackle these challenges, we propose AfroMT, a standardized, clean, and reproducible machine translation benchmark for eight widely spoken African languages. We also develop a suite of analysis tools for system diagnosis taking into account the unique properties of these languages. Furthermore, we explore the newly considered case of low-resource focused pretraining and develop two novel data augmentation-based strategies, leveraging word-level alignment information and pseudo-monolingual data for pretraining multilingual sequence-to-sequence models. We demonstrate significant improvements when pretraining on 11 languages, with gains of up to 2 BLEU points over strong baselines. We also show gains of up to 12 BLEU points over cross-lingual transfer baselines in data-constrained scenarios. All code and pretrained models will be released as further steps towards larger reproducible benchmarks for African languages.
India is one of the richest language hubs on the earth and is very diverse and multilingual. But apart from a few Indian languages, most of them are still considered to be resource poor. Since most of the NLP techniques either require linguistic know ledge that can only be developed by experts and native speakers of that language or they require a lot of labelled data which is again expensive to generate, the task of text classification becomes challenging for most of the Indian languages. The main objective of this paper is to see how one can benefit from the lexical similarity found in Indian languages in a multilingual scenario. Can a classification model trained on one Indian language be reused for other Indian languages? So, we performed zero-shot text classification via exploiting lexical similarity and we observed that our model performs best in those cases where the vocabulary overlap between the language datasets is maximum. Our experiments also confirm that a single multilingual model trained via exploiting language relatedness outperforms the baselines by significant margins.
There is a shortage of high-quality corpora for South-Slavic languages. Such corpora are useful to computer scientists and researchers in social sciences and humanities alike, focusing on numerous linguistic, content analysis, and natural language pr ocessing applications. This paper presents a workflow for mining Wikipedia content and processing it into linguistically-processed corpora, applied on the Bosnian, Bulgarian, Croatian, Macedonian, Serbian, Serbo-Croatian and Slovenian Wikipedia. We make the resulting seven corpora publicly available. We showcase these corpora by comparing the content of the underlying Wikipedias, our assumption being that the content of the Wikipedias reflects broadly the interests in various topics in these Balkan nations. We perform the content comparison by using topic modelling algorithms and various distribution comparisons. The results show that all Wikipedias are topically rather similar, with all of them covering art, culture, and literature, whereas they contain differences in geography, politics, history and science.
We present an extended version of a tool developed for calculating linguistic distances and asymmetries in auditory perception of closely related languages. Along with evaluating the metrics available in the initial version of the tool, we introduce word adaptation entropy as an additional metric of linguistic asymmetry. Potential predictors of speech intelligibility are validated with human performance in spoken cognate recognition experiments for Bulgarian and Russian. Special attention is paid to the possibly different contributions of vowels and consonants in oral intercomprehension. Using incom.py 2.0 it is possible to calculate, visualize, and validate three measurement methods of linguistic distances and asymmetries as well as carrying out regression analyses in speech intelligibility between related languages.
Neural Machine Translation (NMT) for Low Resource Languages (LRL) is often limited by the lack of available training data, making it necessary to explore additional techniques to improve translation quality. We propose the use of the Prefix-Root-Post fix-Encoding (PRPE) subword segmentation algorithm to improve translation quality for LRLs, using two agglutinative languages as case studies: Quechua and Indonesian. During the course of our experiments, we reintroduce a parallel corpus for Quechua-Spanish translation that was previously unavailable for NMT. Our experiments show the importance of appropriate subword segmentation, which can go as far as improving translation quality over systems trained on much larger quantities of data. We show this by achieving state-of-the-art results for both languages, obtaining higher BLEU scores than large pre-trained models with much smaller amounts of data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا