Do you want to publish a course? Click here

TenTrans Multilingual Low-Resource Translation System for WMT21 Indo-European Languages Task

Tentrans نظام الترجمة المنخفضة الموارد متعددة اللغات لمهمة لغات WMT21 الهندية الهندية

312   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes TenTrans' submission to WMT21 Multilingual Low-Resource Translation shared task for the Romance language pairs. This task focuses on improving translation quality from Catalan to Occitan, Romanian and Italian, with the assistance of related high-resource languages. We mainly utilize back-translation, pivot-based methods, multilingual models, pre-trained model fine-tuning, and in-domain knowledge transfer to improve the translation quality. On the test set, our best-submitted system achieves an average of 43.45 case-sensitive BLEU scores across all low-resource pairs. Our data, code, and pre-trained models used in this work are available in TenTrans evaluation examples.



References used
https://aclanthology.org/
rate research

Read More

This paper describes Charles University sub-mission for Terminology translation shared task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over all translation quality. We competed in English-French language pair. Our approach is based on providing the desired translations alongside the input sentence and training the model to use these provided terms. We lemmatize the terms both during the training and inference, to allow the model to learn how to produce correct surface forms of the words, when they differ from the forms provided in the terminology database.
In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo- European low-resource languages from the Germanic and Romance language families. In particular, we build two main classes of transfer-based systems to study how relatedness can benefit the translation performance. The primary system fine-tunes a model pre-trained on a related language pair and the contrastive system fine-tunes one pre-trained on an unrelated language pair. Our experiments show that although relatedness is not necessary for transfer learning to work, it does benefit model performance.
This paper describes TenTrans large-scale multilingual machine translation system for WMT 2021. We participate in the Small Track 2 in five South East Asian languages, thirty directions: Javanese, Indonesian, Malay, Tagalog, Tamil, English. We mainly utilized forward/back-translation, in-domain data selection, knowledge distillation, and gradual fine-tuning from the pre-trained model FLORES-101. We find that forward/back-translation significantly improves the translation results, data selection and gradual fine-tuning are particularly effective during adapting domain, while knowledge distillation brings slight performance improvement. Also, model averaging is used to further improve the translation performance based on these systems. Our final system achieves an average BLEU score of 28.89 across thirty directions on the test set.
This paper describes the participation of the BSC team in the WMT2021's Multilingual Low-Resource Translation for Indo-European Languages Shared Task. The system aims to solve the Subtask 2: Wikipedia cultural heritage articles, which involves transl ation in four Romance languages: Catalan, Italian, Occitan and Romanian. The submitted system is a multilingual semi-supervised machine translation model. It is based on a pre-trained language model, namely XLM-RoBERTa, that is later fine-tuned with parallel data obtained mostly from OPUS. Unlike other works, we only use XLM to initialize the encoder and randomly initialize a shallow decoder. The reported results are robust and perform well for all tested languages.
We present our submissions to the WMT21 shared task in Unsupervised and Very Low Resource machine translation between German and Upper Sorbian, German and Lower Sorbian, and Russian and Chuvash. Our low-resource systems (German↔Upper Sorbian, Russian ↔Chuvash) are pre-trained on high-resource pairs of related languages. We fine-tune those systems using the available authentic parallel data and improve by iterated back-translation. The unsupervised German↔Lower Sorbian system is initialized by the best Upper Sorbian system and improved by iterated back-translation using monolingual data only.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا