جذبت الكشف التلقائي لمؤشر Myers-Briggs Type (MBTI) من منشورات قصيرة عناية ملحوظة في السنوات القليلة الماضية.أظهرت الدراسات الحديثة أن هذه مهمة صعبة للغاية، خاصة في بيانات تويتر شائعة الاستخدام.من الصعب أيضا الحصول على تسميات MBTI أيضا، حيث تتطلب الشرح البشري علماء النفس المدربين، والطريقة التلقائية للحصول عليها من خلال استبيانات طويلة من قابلية الاستخدام المشكوك فيها للمهمة.في هذه الورقة، نقدم طريقة لجمع ملصقات MBTI موثوقة عبر أربعة أسئلة مختارة بعناية يمكن تطبيقها على أي نوع من البيانات النصية.
Automatic detection of the Myers-Briggs Type Indicator (MBTI) from short posts attracted noticeable attention in the last few years. Recent studies showed that this is quite a difficult task, especially on commonly used Twitter data. Obtaining MBTI labels is also difficult, as human annotation requires trained psychologists, and automatic way of obtaining them is through long questionnaires of questionable usability for the task. In this paper, we present a method for collecting reliable MBTI labels via only four carefully selected questions that can be applied to any type of textual data.
References used
https://aclanthology.org/
Humor detection has gained attention in recent years due to the desire to understand user-generated content with figurative language. However, substantial individual and cultural differences in humor perception make it very difficult to collect a lar
Myelomeningoceles are very common anamoly in our country. Mostly it ends
with permanent damage and handicap. Lot of these children die due to meningitis as a complication.
It still till now a large number of children with myelo meningoceles seek me
In this study, we study language change in Chinese Biji by using a classification task: classifying Ancient Chinese texts by time periods. Specifically, we focus on a unique genre in classical Chinese literature: Biji (literally notebook'' or brush n
Healthcare is becoming a more and more important research topic recently. With the growing data in the healthcare domain, it offers a great opportunity for deep learning to improve the quality of service and reduce costs. However, the complexity of e
Knowledge Distillation (KD) is extensively used to compress and deploy large pre-trained language models on edge devices for real-world applications. However, one neglected area of research is the impact of noisy (corrupted) labels on KD. We present,