Do you want to publish a course? Click here

Design and Implementation of the inductor in DC-DC Boost converters

تصميم و تنفيذ الملف في المبدل الرافع للتوتر المستمر

1697   1   53   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The DC sources like fuel cells, solar cells, storage units need to raise its output voltage in order to match load requirements. So often these systems are equipped with Power Electronics techniques in general and DC-DC booster converters in particular. The paper provides the mathematical model and algorithm for designing the booster converter with selected values in order to define the values of the most important parameters of its components including inductor parameters. Based on the developed algorithm, a simulation of the system is conducted in MATLAB / Simulink environment to analyze the impact of changing the inductor inductance on booster performance. Also the paper includes the mathematical model and algorithm for designing the booster inductor in terms of material, conductor type and shape of core and number of windings. Based on the design results, the inductor has been implemented completely in the laboratory. The inductance of the implemented inductor has been measured using a number of measuring methods to make sure of its value and match it with the theoretical values of design. Finally, the developed algorithm has been translated into a program in an environment Matlab / GUI , with which several computer tests have been performed.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية تصميم وتنفيذ الملف في المبدل الرافع للتوتر المستمر (DC-DC Boost Converter)، الذي يستخدم بشكل واسع في تنظيم منابع الطاقة المستمرة مثل الخلايا الشمسية. يهدف البحث إلى تقديم نموذج رياضي وخوارزمية لتصميم المبدل الرافع للتوتر وتحديد قيم عناصره الأساسية، مع التركيز على الملف. تم استخدام بيئة ماتلاب/سيميولينك لنمذجة ومحاكاة دارة المبدل، وتحليل تأثير تغيير محارضة الملف على أداء المبدل. أظهرت النتائج دور الملف في تحديد نمط عمل المبدل كنمط مستمر أو متقطع. كما تضمنت الدراسة تصميم الملف من حيث نواته، نوعه، شكله، وعدد لفاته، واختيار مادة الفيريت لتقليل الضياعات عند العمل على الترددات العالية. تم تنفيذ الملف مخبريًا وقياس محارضته بعدة طرق للتأكد من مطابقتها للقيم النظرية. أخيرًا، تم تطوير برنامج في بيئة ماتلاب/GUI لإدخال بعض البيانات والحصول على القيم المطلوبة لعامل الدور، تيار الملف، وعدد لفاته، والمفاقيد في الملف.
Critical review
دراسة نقدية: تقدم هذه الورقة البحثية مساهمة قيمة في مجال تصميم المبدلات الرافعة للتوتر المستمر، خاصة من خلال التركيز على تصميم الملف وتحليل تأثيره على أداء المبدل. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تعزز من قيمة البحث. أولاً، كان من الممكن تقديم المزيد من التفاصيل حول كيفية اختيار مادة الفيريت وتبرير هذا الاختيار بشكل أعمق. ثانيًا، لم يتم التطرق بشكل كافٍ إلى تأثير العوامل البيئية مثل درجة الحرارة على أداء الملف والمبدل. أخيرًا، كان من الممكن تحسين العرض البصري للنتائج من خلال استخدام المزيد من الرسوم البيانية التوضيحية. بشكل عام، البحث مفيد ويقدم إسهامات هامة، ولكن يمكن تحسين بعض الجوانب لتقديم صورة أكثر شمولية ودقة.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو تصميم الملف في دارة المبدل الرافع للتوتر المستمر وتنفيذه مخبريًا، وتحليل تأثير محارضة الملف على أداء المبدل.

  2. ما هي البيئة البرمجية المستخدمة في نمذجة ومحاكاة دارة المبدل؟

    تم استخدام بيئة ماتلاب/سيميولينك لنمذجة ومحاكاة دارة المبدل.

  3. ما هي المادة المستخدمة في نواة الملف ولماذا تم اختيارها؟

    تم اختيار مادة الفيريت لنواة الملف لتقليل الضياعات عند العمل على الترددات العالية.

  4. ما هي الطرق المستخدمة لقياس محارضة الملف مخبريًا؟

    تم قياس محارضة الملف مخبريًا باستخدام ثلاث طرق: جهاز Metrex IX 3131، مقياس Meterman - LCRMeter، وتشكيل دارة طنين مع مكثف.


References used
ALDAHIM,GH. ; NATSHEH, A. ; OIRKOZAK, H. 2012, Control of Chaotic Behavior in Parallel-Connected DC-DC Boost Converters. Energy Procedia/Elsevier Vol 18, 1286- 1290
ALDAHIM, GH. ; Oirekozek, H. ; Sakka, Z. 2013, Impact of Inductor Resistance on the Dynamic Behavior of a DC– DC Boost Converter Using Bifurcation and Chaos Theory. Energy Procedia/Elsevier
ERICKSON ,R. W.; Maximovic', D. 2004 , Fundamentals of Power Electronics.2nd. ed., Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow. 560p
LEUCHTER, J. ; BAUER, P. ; BOJDA, P. 2007, bidirectional dc- dc converters for super capacitor based energy buffer for electrical gen-sets. Rerucha Vladimir
MOHAN,N.; UNDELAND,T.M.; Robbins,W.P.1995, Power electronics - Converters, Application, and Design .2nd. ed., John Willey & Sons, 540p
rate research

Read More

This research is a study of a new control method of switching non-isolated dc-dc boost converters used in Photovoltaic systems. This method is called Sliding Mode Control (SMC), which is considered as an alternative to other methods, to keep a sta ble and constant output voltage by changing the input voltage and load current. The analyzing method of the switching nonisolated dc-dc boost converters using SMC shows the same complexity of Clasic circuits, but it gives an increasing potential and a high-dynamic response to ensure a constant output voltage reaches to 40volt by changing the input voltage in the range (16-21volt) and the load (8-13Ω). Methods to measure the accuracy, error, and efficiency of maximum power point trackers (MPPT) have been identified and presented in a schematic way, together with definitions of terms and calculations.
This research introduce a detailed study of designing high efficiency 100W DC-DC Boost Converter for standalone photovoltaic system and practical implementation of it’s circuit, by selecting the best elements with less loss in power in the tow des igns,to reach the best efficiency by theoretical calculations and simulation in ORCA, and compare the results with the practical implementation. Also this research shows a study of effect of frequency variation on the efficiency of the converter.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
The main goal of this search is to design maximum solar power batteries charging system, Maximum power point tracking (MPPT) system is used in the photovoltaic (PV) system consisting of a buck-boost Direct Current DC/DC converter, which is controll ed by a microcontroller unit, The microcontroller is programmed with a simple and reliable MPPT called Incremental Conductance (InCond). The designed battery charger was tested, and the results obtained had insured about the permanent control on the battery charging. Comparison study was done, with PWM solar charger controller, it was obvious by The experimental results, that the battery get charged in a very short time period considering of the solar sun light hours per day, and the characteristics of the used solar panel, which confirm the reliable performance of the suggested charging system.
This paper offer a designed module for buck-boost DC-DC converter, able to solve unsteady charging voltage problem, due to constant decreasing scale of transformers and grid or solar panel voltage drop, this module has been designed using fuzzy log ic in PWM control and simulated in matlab and all test and its results illustrated the suitable figure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا