Do you want to publish a course? Click here

In this paper, we present a numerical algorithm for solving linear integro differential Volterra-Friedholm equations by using spline polynomials of degree ninth with six collocation points. The Fredholm-Volterra equation is converted into a system of first-order linear differential equations, which is solved by applying polynomials and their derivatives with collocation points. The convergence of the proposed method is demonstrated when it is applied to above problem. To test the effectiveness and accuracy of this method, two test problems were resolved where comparisons could be used with other results taken from recent references to the high resolution provided by spline approximations.
In this paper, we develop spline collocation technique for the numerical solution of general twelfth-order linear boundary value problems (BVPs). This technique based on polynomial splines from order sixteenth as well as five collocation points at every subinterval of BVPs. The method developed not only approximates the solution of BVP, but its higher order derivatives as well. We show that the spline collocation method is existent and unique when it is applied into a test problem. Also, its global truncation error is estimated. Moreover, the purposed spline method when applied to test problems will be consistent and convergent from sixteenth order. Three numerical examples are given to illustrate the applicability and efficiency of the new method. Comparisons of our results with some other methods show that our method is very effective and successful.
In this paper, we use polynomial splines of eleventh degree with three collocation points to develop a method for computing approximations to the solution and its derivatives up to ninth order for general linear and nonlinear ninth-order boundary-v alue problems (BVPs). The study shows that the spline method with three collocation points when is applied to these problems is existent and unique. We prove that the proposed method if applied to ninth-order BVPs is stable and consistent of order eleven, and it possesses convergence rate greater than six. Finally, some numerical experiments are presented for illustrating the theoretical results and by comparing the results of our method with the other methods, we reveal that the proposed method is better than others.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا