Do you want to publish a course? Click here

Despite their success, modern language models are fragile. Even small changes in their training pipeline can lead to unexpected results. We study this phenomenon by examining the robustness of ALBERT (Lan et al., 2020) in combination with Stochastic Weight Averaging (SWA)---a cheap way of ensembling---on a sentiment analysis task (SST-2). In particular, we analyze SWA's stability via CheckList criteria (Ribeiro et al., 2020), examining the agreement on errors made by models differing only in their random seed. We hypothesize that SWA is more stable because it ensembles model snapshots taken along the gradient descent trajectory. We quantify stability by comparing the models' mistakes with Fleiss' Kappa (Fleiss, 1971) and overlap ratio scores. We find that SWA reduces error rates in general; yet the models still suffer from their own distinct biases (according to CheckList).
Multimodal sentiment analysis (MSA) draws increasing attention with the availability of multimodal data. The boost in performance of MSA models is mainly hindered by two problems. On the one hand, recent MSA works mostly focus on learning cross-modal dynamics, but neglect to explore an optimal solution for unimodal networks, which determines the lower limit of MSA models. On the other hand, noisy information hidden in each modality interferes the learning of correct cross-modal dynamics. To address the above-mentioned problems, we propose a novel MSA framework Modulation Model for Multimodal Sentiment Analysis (M3SA) to identify the contribution of modalities and reduce the impact of noisy information, so as to better learn unimodal and cross-modal dynamics. Specifically, modulation loss is designed to modulate the loss contribution based on the confidence of individual modalities in each utterance, so as to explore an optimal update solution for each unimodal network. Besides, contrary to most existing works which fail to explicitly filter out noisy information, we devise a modality filter module to identify and filter out modality noise for the learning of correct cross-modal embedding. Extensive experiments on publicly datasets demonstrate that our approach achieves state-of-the-art performance.
Curriculum learning, a machine training strategy that feeds training instances to the model from easy to hard, has been proven to facilitate the dialogue generation task. Meanwhile, knowledge distillation, a knowledge transformation methodology among teachers and students networks can yield significant performance boost for student models. Hence, in this paper, we introduce a combination of curriculum learning and knowledge distillation for efficient dialogue generation models, where curriculum learning can help knowledge distillation from data and model aspects. To start with, from the data aspect, we cluster the training cases according to their complexity, which is calculated by various types of features such as sentence length and coherence between dialog pairs. Furthermore, we employ an adversarial training strategy to identify the complexity of cases from model level. The intuition is that, if a discriminator can tell the generated response is from the teacher or the student, then the case is difficult that the student model has not adapted to yet. Finally, we use self-paced learning, which is an extension to curriculum learning to assign weights for distillation. In conclusion, we arrange a hierarchical curriculum based on the above two aspects for the student model under the guidance from the teacher model. Experimental results demonstrate that our methods achieve improvements compared with competitive baselines.
Identifying emotions from text is crucial for a variety of real world tasks. We consider the two largest now-available corpora for emotion classification: GoEmotions, with 58k messages labelled by readers, and Vent, with 33M writer-labelled messages. We design a benchmark and evaluate several feature spaces and learning algorithms, including two simple yet novel models on top of BERT that outperform previous strong baselines on GoEmotions. Through an experiment with human participants, we also analyze the differences between how writers express emotions and how readers perceive them. Our results suggest that emotions expressed by writers are harder to identify than emotions that readers perceive. We share a public web interface for researchers to explore our models.
Compliments and concerns in reviews are valuable for understanding users' shopping interests and their opinions with respect to specific aspects of certain items. Existing review-based recommenders favor large and complex language encoders that can o nly learn latent and uninterpretable text representations. They lack explicit user-attention and item-property modeling, which however could provide valuable information beyond the ability to recommend items. Therefore, we propose a tightly coupled two-stage approach, including an Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware Rating Estimator (APRE). Unsupervised ASPE mines Aspect-Sentiment pairs (AS-pairs) and APRE predicts ratings using AS-pairs as concrete aspect-level evidences. Extensive experiments on seven real-world Amazon Review Datasets demonstrate that ASPE can effectively extract AS-pairs which enable APRE to deliver superior accuracy over the leading baselines.
Current approaches to empathetic response generation focus on learning a model to predict an emotion label and generate a response based on this label and have achieved promising results. However, the emotion cause, an essential factor for empathetic responding, is ignored. The emotion cause is a stimulus for human emotions. Recognizing the emotion cause is helpful to better understand human emotions so as to generate more empathetic responses. To this end, we propose a novel framework that improves empathetic response generation by recognizing emotion cause in conversations. Specifically, an emotion reasoner is designed to predict a context emotion label and a sequence of emotion cause-oriented labels, which indicate whether the word is related to the emotion cause. Then we devise both hard and soft gated attention mechanisms to incorporate the emotion cause into response generation. Experiments show that incorporating emotion cause information improves the performance of the model on both emotion recognition and response generation.
Aspect Category Sentiment Analysis (ACSA), which aims to identify fine-grained sentiment polarities of the aspect categories discussed in user reviews. ACSA is challenging and costly when conducting it into real-world applications, that mainly due to the following reasons: 1.) Labeling the fine-grained ACSA data is often labor-intensive. 2.) The aspect categories will be dynamically updated and adjusted with the development of application scenarios, which means that the data must be relabeled frequently. 3.) Due to the increase of aspect categories, the model must be retrained frequently to fast adapt to the newly added aspect category data. To overcome the above-mentioned problems, we introduce a novel Meta Multi-Task Learning (MMTL) approach, that frame ACSA tasks as a meta-learning problem (i.e., regarding aspect-category sentiment polarity classification problems as the different training tasks for meta-learning) to learn an ideal and shareable initialization for the multi-task learning model that can be adapted to new ACSA tasks efficiently and effectively. Experiment results show that the proposed approach significantly outperforms the strong pre-trained transformer-based baseline model, especially, in the case of less labeled fine-grained training data.
In translating text where sentiment is the main message, human translators give particular attention to sentiment-carrying words. The reason is that an incorrect translation of such words would miss the fundamental aspect of the source text, i.e. the author's sentiment. In the online world, MT systems are extensively used to translate User-Generated Content (UGC) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. It is important in such scenarios to accurately measure how far an MT system can be a reliable real-life utility in transferring the correct affect message. This paper tackles an under-recognized problem in the field of machine translation evaluation which is judging to what extent automatic metrics concur with the gold standard of human evaluation for a correct translation of sentiment. We evaluate the efficacy of conventional quality metrics in spotting a mistranslation of sentiment, especially when it is the sole error in the MT output. We propose a numerical sentiment-closeness'' measure appropriate for assessing the accuracy of a translated affect message in UGC text by an MT system. We will show that incorporating this sentiment-aware measure can significantly enhance the correlation of some available quality metrics with the human judgement of an accurate translation of sentiment.
We investigate the feasibility of defining sentiment evoked by fine-grained news events. Our research question is based on the premise that methods for detecting implicit sentiment in news can be a key driver of content diversity, which is one way to mitigate the detrimental effects of filter bubbles that recommenders based on collaborative filtering may produce. Our experiments are based on 1,735 news articles from major Flemish newspapers that were manually annotated, with high agreement, for implicit sentiment. While lexical resources prove insufficient for sentiment analysis in this data genre, our results demonstrate that machine learning models based on SVM and BERT are able to automatically infer the implicit sentiment evoked by news events.
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep Multi-Task Learning (MTL) model, allowing knowledge interaction between the two tasks. Our MTL model's architecture consists of a Bidirectional Encoder Representation from Transformers (BERT) model, a multi-task attention interaction module, and two task classifiers. The overall obtained results show that our proposed model outperforms its single-task and MTL counterparts on both sarcasm and sentiment detection subtasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا