في ترجمة النص حيث تعتبر المشاعر الرسالة الرئيسية، يعطي المترجمون البشريون اهتماما خاصا للكلمات تحمل المعنويات. السبب هو أن ترجمة غير صحيحة لهذه الكلمات سوف تفوت الجانب الأساسي للنص المصدر، أي شعور المؤلف. في العالم عبر الإنترنت، تستخدم أنظمة MT على نطاق واسع لترجمة المحتوى الذي تم إنشاؤه بواسطة المستخدم (UGC) مثل المراجعات، وتغريدات، ووظائف وسائل التواصل الاجتماعي، حيث تكون الرسالة الرئيسية في كثير من الأحيان موقف المؤلف الإيجابي أو السلبي تجاه موضوع النص. من المهم في مثل هذه السيناريوهات لقياس بدقة إلى حد ما يمكن أن يكون نظام MT أداة مساعدة واقعية موثوقة في نقل الرسالة الصحيحة. تتناول هذه الورقة مشكلة أقل معترف بها في مجال تقييم الترجمة الآلية التي تهم إلى أي مدى يتفق المقاييس التلقائية مع مستوى الذهب من التقييم البشري للحصول على ترجمة صحيحة للمشاعر. نقوم بتقييم فعالية مقاييس الجودة التقليدية في اكتشاف عدم فهم الثقة، خاصة عندما يكون الخطأ الوحيد في إخراج MT. نقترح قياس المعنويات العددية "تقييس" المناسب لتقييم دقة الرسالة المترجمة تؤثر في نص UGC بواسطة نظام MT. سنظهر أن دمج هذا التدبير على دراية المعنويات يمكن أن يعزز بشكل كبير ارتباط بعض مقاييس الجودة المتاحة مع الحكم الإنساني لترجمة دقيقة للمشاعر.
In translating text where sentiment is the main message, human translators give particular attention to sentiment-carrying words. The reason is that an incorrect translation of such words would miss the fundamental aspect of the source text, i.e. the author's sentiment. In the online world, MT systems are extensively used to translate User-Generated Content (UGC) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. It is important in such scenarios to accurately measure how far an MT system can be a reliable real-life utility in transferring the correct affect message. This paper tackles an under-recognized problem in the field of machine translation evaluation which is judging to what extent automatic metrics concur with the gold standard of human evaluation for a correct translation of sentiment. We evaluate the efficacy of conventional quality metrics in spotting a mistranslation of sentiment, especially when it is the sole error in the MT output. We propose a numerical sentiment-closeness'' measure appropriate for assessing the accuracy of a translated affect message in UGC text by an MT system. We will show that incorporating this sentiment-aware measure can significantly enhance the correlation of some available quality metrics with the human judgement of an accurate translation of sentiment.
References used
https://aclanthology.org/
This paper describes NiuTrans neural machine translation systems of the WMT 2021 news translation tasks. We made submissions to 9 language directions, including English2Chinese, Japanese, Russian, Icelandic and English2Hausa tasks. Our primary system
This paper describes our system (Team ID: nictrb) for participating in the WAT'21 restricted machine translation task. In our submitted system, we designed a new training approach for restricted machine translation. By sampling from the translation t
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches
This work introduces a simple regressive ensemble for evaluating machine translation quality based on a set of novel and established metrics. We evaluate the ensemble using a correlation to expert-based MQM scores of the WMT 2021 Metrics workshop. In
In this work, two Neural Machine Translation (NMT) systems have been developed and evaluated as part of the bidirectional Tamil-Telugu similar languages translation subtask in WMT21. The OpenNMT-py toolkit has been used to create quick prototypes of