Do you want to publish a course? Click here

MMTL: The Meta Multi-Task Learning for Aspect Category Sentiment Analysis

MMTL: التعلم Meta متعدد المهام لتحليل المعنويات الفئة في الفئة

311   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Aspect Category Sentiment Analysis (ACSA), which aims to identify fine-grained sentiment polarities of the aspect categories discussed in user reviews. ACSA is challenging and costly when conducting it into real-world applications, that mainly due to the following reasons: 1.) Labeling the fine-grained ACSA data is often labor-intensive. 2.) The aspect categories will be dynamically updated and adjusted with the development of application scenarios, which means that the data must be relabeled frequently. 3.) Due to the increase of aspect categories, the model must be retrained frequently to fast adapt to the newly added aspect category data. To overcome the above-mentioned problems, we introduce a novel Meta Multi-Task Learning (MMTL) approach, that frame ACSA tasks as a meta-learning problem (i.e., regarding aspect-category sentiment polarity classification problems as the different training tasks for meta-learning) to learn an ideal and shareable initialization for the multi-task learning model that can be adapted to new ACSA tasks efficiently and effectively. Experiment results show that the proposed approach significantly outperforms the strong pre-trained transformer-based baseline model, especially, in the case of less labeled fine-grained training data.

References used
https://aclanthology.org/
rate research

Read More

Aspect category sentiment analysis has attracted increasing research attention. The dominant methods make use of pre-trained language models by learning effective aspect category-specific representations, and adding specific output layers to its pre- trained representation. We consider a more direct way of making use of pre-trained language models, by casting the ACSA tasks into natural language generation tasks, using natural language sentences to represent the output. Our method allows more direct use of pre-trained knowledge in seq2seq language models by directly following the task setting during pre-training. Experiments on several benchmarks show that our method gives the best reported results, having large advantages in few-shot and zero-shot settings.
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep Multi-Task Learning (MTL) model, allowing knowledge interaction between the two tasks. Our MTL model's architecture consists of a Bidirectional Encoder Representation from Transformers (BERT) model, a multi-task attention interaction module, and two task classifiers. The overall obtained results show that our proposed model outperforms its single-task and MTL counterparts on both sarcasm and sentiment detection subtasks.
In this paper, we investigate the Aspect Category Sentiment Analysis (ACSA) task from a novel perspective by exploring a Beta Distribution guided aspect-aware graph construction based on external knowledge. That is, we are no longer entangled about h ow to laboriously search the sentiment clues for coarse-grained aspects from the context, but how to preferably find the words highly related to the aspects in the context and determine their importance based on the public knowledge base. In this way, the contextual sentiment clues can be explicitly tracked in ACSA for the aspects in the light of these aspect-related words. To be specific, we first regard each aspect as a pivot to derive aspect-aware words that are highly related to the aspect from external affective commonsense knowledge. Then, we employ Beta Distribution to educe the aspect-aware weight, which reflects the importance to the aspect, for each aspect-aware word. Afterward, the aspect-aware words are served as the substitutes of the coarse-grained aspect to construct graphs for leveraging the aspect-related contextual sentiment dependencies in ACSA. Experiments on 6 benchmark datasets show that our approach significantly outperforms the state-of-the-art baseline methods.
Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two es sential tasks to detect the fine-to-coarse sentiment polarities. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset ASAP including 46, 730 genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a 5-star scale rating, each review is manually annotated according to its sentiment polarities towards 18 pre-defined aspect categories. We hope the release of the dataset could shed some light on the field of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.
Aspect-based sentiment analysis (ABSA) predicts the sentiment polarity towards a particular aspect term in a sentence, which is an important task in real-world applications. To perform ABSA, the trained model is required to have a good understanding of the contextual information, especially the particular patterns that suggest the sentiment polarity. However, these patterns typically vary in different sentences, especially when the sentences come from different sources (domains), which makes ABSA still very challenging. Although combining labeled data across different sources (domains) is a promising solution to address the challenge, in practical applications, these labeled data are usually stored at different locations and might be inaccessible to each other due to privacy or legal concerns (e.g., the data are owned by different companies). To address this issue and make the best use of all labeled data, we propose a novel ABSA model with federated learning (FL) adopted to overcome the data isolation limitations and incorporate topic memory (TM) proposed to take the cases of data from diverse sources (domains) into consideration. Particularly, TM aims to identify different isolated data sources due to data inaccessibility by providing useful categorical information for localized predictions. Experimental results on a simulated environment for FL with three nodes demonstrate the effectiveness of our approach, where TM-FL outperforms different baselines including some well-designed FL frameworks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا