Do you want to publish a course? Click here

This study concentrate on the driven pile in sand soils, to study and inspect this type of piles via minimized laboratory models in conditions similar to field conditions, and compare research result with actual load tests.
تقييم تأثير موقع النسج السنية التاجية المتبقية على مقاومة الانكسار في الاسنان وحيدة الجذر المرممة بأوتاد الراتنج المقوى بالألياف ( دراسة مخبرية واستقصائية)
This research deals with the study of the behavior of piles under the influence of seismic loads through (3D) modeling using FE-Method-program (ABAQUS) with special reference to the most important parameters affecting the displacements and internal f orces generated in piles. This study has been completed in two phases: the first phase is a case study of the single Pile (reference case), where a study of the behavior of a single pile assigning structure is modeled with a degree of freedom. The parametric study results show that the presence of structure causes the application of a large load in the upper part of the pile resulting from the impact of inertia dominating the kinetic effect. The forces of inertia increases with the increasing mass of structure, and when the frequency of structure nears the frequency of seismic load. The second phase deals with the study of the situation of the group of piles, where the study handles the effect of a number of piles, piles spacing, and locations on the internal force and displacements generated in the piles. The parametric study results have shown for this phase of this research that an increase the number of piles in the group causes a significant increase of internal forces generated at the top of the pile and a slight decrease for those forces in the central part of the pile, that seismic loads are not distributed equally for all piles, and that corner piles are subject to greater loads while mid. Piles are subject to less load.
This research represents a trial to establish a primary database of load tests applied on concrete driven piles embedded in sandy soils. This research depended on analyzing and evaluating a large number of available load test curves of driven piles. The variation of pile ultimate bearing capacity value is studied according to several parameters such as (relative density of sand, embedded length of pile and pile diameter). Depending on the obtained results a primary approximate relationship is suggested to calculate the ultimate bearing capacity of driven piles in sand. Then, a comparison is made between the suggested method and the other analytical calculation methods and also, with the obtained results from an available international codes of practice in America, Russia and Germany. The approximate relationship introduces a simple and easy method to calculate the bearing capacity of concrete driven piles in sands. Also, This suggested method may be considered as an introduction to developing the researches to include different kinds of soils.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا