ترغب بنشر مسار تعليمي؟ اضغط هنا

استكشاف تمثيل الإدخال الحبيبية لتوليد الأسئلة مرضية

Exploring Input Representation Granularity for Generating Questions Satisfying Question-Answer Congruence

270   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في توليد السؤال، يجب أن يكون السؤال الناتج يرتبطا جيدا وغالبا ما يتعلق بالإجابة بمثابة المدخلات. استمتعت أساليب الجيل العصبي في الغالب بالدليل التوزيعي للكلمات كإجراءات ذات معنى وتوليد أسئلة واحدة في وقت واحد. في هذه الورقة، نستكشف إمكانية الترميزات المستندة إلى النماذج والمزيد من الروائح المحبوسة، مثل تمثيلات الشخصية أو الكلمات الفرعية لجيل السؤال. نبدأ من هندسة SEQ2SEQ النموذجية باستخدام Word Ageddings المقدمة من De Kuthy et al. (2020)، الذين يولدون أسئلة من النص بحيث الإجابة المقدمة في مبارات نص الإدخال ليس فقط في معنى ولكن أيضا في شكل، تلبية متطابقة إجابة الأسئلة. نظهر أن النماذج المدربة على الطابع والتمثيلات الفرعية تتفوق بشكل كبير على النتائج المنشورة بناء على embeddings Word، وتقوم بذلك مع عدد أقل من المعلمات. نهجنا يلغي مشكلتين مهمتين للنهج القائم على الكلمة: ترميز الكلمات النادرة أو غير المفردات والاستبدال غير الصحيح للكلمات مع تلك ذات الصلة بالتنسيق. يحسن النموذج المستند إلى الطابع بشكل كبير على النتائج المنشورة، سواء من حيث درجات بلو واعتبار جودة السؤال الذي تم إنشاؤه. يتجاوز المهمة المحددة، تضيف هذه النتيجة إلى الأدلة التي تزن تمثيلات مختلفة من النماذج والمعنى لمهام معالجة اللغة الطبيعية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

على الرغم من إظهار قيم واعدة للتطبيقات المصب، فإن توليد السؤال والإجابة معا يتم استكشافها. في هذه الورقة، نقدم مهمة جديدة تستهدف توليد زوج الإجابة على الأسئلة من الصور المرئية. لا يتطلب عدم توليد أزواج حول الإجابات المتنوعة فقط ولكن أيضا الحفاظ على ا لاتساق منهم. نحن ندرس نماذج جيل مختلفة لهذه المهمة واقتراح ثلاث نماذج: نموذج خط الأنابيب، النموذج المشترك، النموذج المتسلسل. نحن ندمج الاستدلال الاختلافي في هذه النماذج لتحقيق التنوع والاتساق. ونحن نقترح أيضا تقدير تمثيل المنطقة ومحاذاة الاهتمام لتحسين الاتساق أكثر. ونحن أخيرا وضع مقيم كقيط كمي للاتساق. نحن نقوم بالتحقق من نهجنا على معيارين، VQA2.0 و Visual-7W، من خلال تقييم التنوع والاتساق يدويا يدويا. تظهر النتائج التجريبية فعالية نماذجنا: يمكن أن تولد أزواج متنوعة أو متسقة. علاوة على ذلك، يمكن استخدام هذه المهمة لتحسين جيل السؤال المرئي والإجابة على السؤال المرئي.
نظرا للتدريب الفعال من خلال التدريب والطلاقة في النصوص المتولدة، يتم اقتراح العديد من النماذج القائمة على إطار ترميز وحدة فك الترميز في مؤخرا للأجيال إلى نص البيانات. الترميز المناسب لبيانات الإدخال هو جزء أساسي من نماذج وحدة فك التشفير هذه. ومع ذلك، ركزت فقط عدد قليل من الأعمال البحثية على أساليب الترميز السليم. تعرض هذه الورقة نموذجا جديدا لتنسيق البيانات إلى ترميز ترميز الترميز، حيث يرميز التشفير المقترح بعناية بيانات الإدخال وفقا للهيكل الأساسي للبيانات. يتم تقييم فعالية التشفير المقترح على حد سواء على حد سواء على حد سواء من خلال بيانات الإدخال خارج نطاق البيانات دون تغيير معنى تلك البيانات. لاختيار معلومات المحتوى المناسبة في البيانات المشفرة من التشفير، يشتمل النموذج المقترح على بوابات الاهتمام في وحدة فك الترميز. مع تجارب واسعة على DataSet Wikibio و E2E، نوضح أن النموذج لدينا يفوق على أحدث النماذج والعديد من أنظمة خط الأساس القياسية. تحليل النموذج من خلال اختبارات الأزمة المكونة والتقييم البشري يؤيد النموذج المقترح كنظام مؤلف جيدا.
في التعليم، أصبحت أسئلة الاختبار أداة مهمة لتقييم معرفة الطلاب.ومع ذلك، فإن إعداد هذه الأسئلة يدويا هو مهمة مملة، وبالتالي تم اقتراح توليد السؤال التلقائي كديل ممكن.حتى الآن، ركزت الغالبية العظمى من الأبحاث على توليد نص الأسئلة، والاعتماد على سؤال حو ل مجموعات البيانات مع الإجابات التي اختارها بسهولة، ومشكلة كيفية التوصل إلى إجابة المرشحين في المقام الأول تم تجاهلها إلى حد كبير.هنا، نحن نهدف إلى سد هذه الفجوة.على وجه الخصوص، نقترح نموذجا يمكن أن ينشئ عددا محددا من المرشحين للإجابة لمرق معين من النص، والذي يمكن بعد ذلك استخدامه من قبل المدربين لكتابة الأسئلة يدويا أو يمكن تمريرهم كمدخل لمولدات السؤال التلقائي للإجابة.تشير تجاربنا إلى أن نموذج جيل الرد الخاص بنا اقترح ينفأ على العديد من خطوط الأساس.
لإمكانية النمط الكامل لقدرة الإنسان التي تشبه الإنسان على طرح الأسئلة، يجب أن تكون نماذج توليد السؤال التلقائي (QG) قادرة على إنتاج تعبيرات متعددة من نفس السؤال مع مستويات مختلفة من التفاصيل. لسوء الحظ، لا تتضمن مجموعات البيانات الحالية المتاحة لتعلم QG إعادة الصياغة أو الاختلافات السؤال التي تؤثر على قدرة النموذج على تعلم هذه القدرة. نقدم التنوب، مجموعة بيانات تحتوي على إعادة كتابة من الحقائق التي تم إنشاؤها من قبل الإنسان من بيانات الفريق المستخدمة على نطاق واسع لمعالجة هذا القيد. تم الحصول على أسئلة في التنوب عن طريق الجمع بين سؤال معين مع حقائق من الكيانات المشار إليها في السؤال. نحن ندرس نموذج فك التشفير المزدوج ومولد السؤال المحدد لحقيقة (FIQG)، لتعلم إنشاء أسئلة غير ضيقة من الواقع من سؤال معين. تظهر النتائج التجريبية أن FIQG يشتمل بفعالية على معلومات من الحقائق لإضافة المزيد من التفاصيل لسؤال معين. إلى حد علمنا، لدينا هي الدراسة الأولى لتقديم ضخ الحقائق كأشكال جديدة من إعادة صياغة الأسئلة.
توليد أزواج الإجابة ذات الجودة العالية هي مهمة صلبة ولكنها ذات مغزى. على الرغم من أن الأعمال السابقة قد حققت نتائج رائعة حول توليد الأسئلة على دراية بالإجابة، فمن الصعب تطبيقها في تطبيق عملي في مجال التعليم. تتناول هذه الورقة لأول مرة مهمة توليد زوج الإجابة السؤال في بيانات الفحص العالمي الحقيقي، وتقترح إطارا جديدا جديدا في العرق. لالتقاط المعلومات المهمة لمقطع الإدخال، نقوم أولا بإنشاء أجهزة iTPhragrases (بدلا من استخراج)، وبالتالي يتم تقليل هذه المهمة إلى توليد مشترك مسدد السؤال عن السؤال المجاني. تبعا لذلك، نقترح نموذج اتصالات متعددة الوكيل لتوليد واستفسار الأسئلة والمجاسات القصيرة بشكل متكرر، ثم قم بتطبيق السؤال والمجاسيات المتولدة لتوجيه جيل الإجابات. لإنشاء معيار قوي، نبني نموذجنا على نموذج ما قبل التدريب الجيل القوي. تظهر النتائج التجريبية أن نموذجنا يجعل اختراقات كبيرة في مهمة جيل الإجابة عن السؤال. علاوة على ذلك، فإننا نصنع تحليلا شاملا على طرازنا، مما يشير إلى اتجاهات جديدة لهذه المهمة الصعبة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا