تصف هذه الورقة مساهمة Sebamat بمهمة مشتركة بين 2021 WMT Translation.باستخدام مجموعة أدوات الترجمة الآلية العصبية Marian، تم بناء أنظمة الترجمة القائمة على بنية محولات Google في كلا الاتجاهين في الكاتالونية - الإسبانية والبرتغالية - الإسبانية.تم تدريب الأنظمة على اثنين من إعدادات المعلمة مناقصة (أحجام مختلفة لمفردات لترميز زوج البايت) باستخدام العرض الموازي ولكن ليس فقط الشركة المقارنة منظمي المهام المشتركة.وفقا لنتائج التقييم الرسمية الخاصة بهم، تبين أن نظام Sebamat تنافسي مع الترتيب بين أفضل الفرق وعشرات بلو بين 38 و 47 لأزواج اللغة التي تنطوي على البرتغالية وبين 76 و 80 لأزواج اللغة التي تنطوي على الكاتالونية.
This paper describes the SEBAMAT contribution to the 2021 WMT Similar Language Translation shared task. Using the Marian neural machine translation toolkit, translation systems based on Google's transformer architecture were built in both directions of Catalan--Spanish and Portuguese--Spanish. The systems were trained in two contrastive parameter settings (different vocabulary sizes for byte pair encoding) using only the parallel but not the comparable corpora provided by the shared task organizers. According to their official evaluation results, the SEBAMAT system turned out to be competitive with rankings among the top teams and BLEU scores between 38 and 47 for the language pairs involving Portuguese and between 76 and 80 for the language pairs involving Catalan.
المراجع المستخدمة
https://aclanthology.org/
تم التركيز الفكرة الرئيسية لهذا الحل على التركيز على تنظيف Corpus وإعدادها وبعد ذلك، استخدم حل خارج مربع (OpenNMT) مع طراز المحولات المنشور الافتراضي.لإعداد Corpus، استخدمنا مجموعة من الأدوات القياسية (كبرامج نصية موسى أو حزم بيثون)، ولكن أيضا، من بي
نحن نحقق في التعلم التحويل بناء على نماذج الترجمة الآلية المدربة مسبقا للترجمة بين (الموارد المنخفضة) اللغات المشابهة.هذا العمل هو جزء من مساهمتنا في المهمة المشتركة لغات WMT 2021 بمثابة مهمة مشتركة حيث أرسلنا نماذج لأزواج اللغة المختلفة، بما في ذلك
طبقات محول خفيفة الوزن، وحدات يمكن إدراجها بين طبقات المحولات. يستكشف العمل الأخير باستخدام مثل هذه الطبقات للترجمة الآلية العصبية (NMT)، لتكييف النماذج المدربة مسبقا إلى مجالات جديدة أو أزواج لغة، والتدريب فقط مجموعة صغيرة من المعلمات لكل إعداد جديد
انفجار المحتوى الذي أنشأه المستخدم (UGC) --- E.G. وظائف وتعليقات وسائل التواصل الاجتماعي والتعليقات والمراجعات --- تحفز تطوير تطبيقات NLP مصممة على هذه الأنواع من النصوص غير الرسمية. السائدة بين هذه التطبيقات كانت تحليل المعنويات والترجمة الآلية (MT)
تراجع الجملة هي تقنية تكييف مجال بسيطة وقوية.نقوم بإجراء تصنيف النطاق لحساب الحوسبة أوزان مع 1) نموذج اللغة Cross Entropy الفرق 2) شبكة عصبية تشفيرية 3) شبكة توتور العصبية العودية.قارنا هذه الأساليب فيما يتعلق بدقة تصنيف المجال ودراسة توزيع الاحتمالا