ترغب بنشر مسار تعليمي؟ اضغط هنا

التكيف المجال متعدد اللغات ل NMT: لغة الخفض ومعلومات المجال مع المحولات

Multilingual Domain Adaptation for NMT: Decoupling Language and Domain Information with Adapters

596   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

طبقات محول خفيفة الوزن، وحدات يمكن إدراجها بين طبقات المحولات. يستكشف العمل الأخير باستخدام مثل هذه الطبقات للترجمة الآلية العصبية (NMT)، لتكييف النماذج المدربة مسبقا إلى مجالات جديدة أو أزواج لغة، والتدريب فقط مجموعة صغيرة من المعلمات لكل إعداد جديد (زوج لغة أو مجال). في هذا العمل، ندرس تكوين محولات اللغة والمجال في سياق الترجمة الآلية. نحن نهدف إلى الدراسة، 1) التكيف الفعال مع المعلمة إلى مجالات متعددة ولغات في وقت واحد (سيناريو الموارد الكاملة) و 2) نقل عبر اللغات في المجالات حيث تكون البيانات الموازية غير متوفرة لأزواج لغة معينة (سيناريو الموارد الجزئية). نجد أنه في سيناريو الموارد الجزئي مزيجا ساذجا من محولات محولات خاصة بالمجال وغالبا ما ينتج عن النسيان الكارثي باللغات المفقودة. ندرس طرق أخرى للجمع بين المحولات لتخفيف هذه المشكلة وتعظيم التحويل عبر اللغات. من خلال أفضل مجموعات محول لدينا، نحصل على تحسينات من 3-4 بلو في المتوسط ​​لغات المصدر التي لا تملك بيانات داخل المجال. بالنسبة للغات المستهدفة دون بيانات داخل المجال، نحقق تحسن مماثل عن طريق الجمع بين المحولات بالترجمة الخلفي. تتوفر مواد تكميلية في https://tinyurl.com/r66stbxj.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعرف الهند باسم أرض العديد من الألسنة واللهجات. الترجمة الآلية العصبية (NMT) هي النهج الحديث الحالي للترجمة الآلية (MT) ولكنه يعمل بشكل أفضل فقط مع مجموعات البيانات الكبيرة التي تفتقر إليها اللغات الهندية عادة، مما يجعل هذا النهج غير قابل للاستمرار. لذلك، في هذه الورقة، نتعامل مع مشكلة ندرة البيانات من خلال تدريب أنظمة NMT متعددة اللغات متعددة اللغات وغير اللغوية التي تنطوي على لغات ?????? ????????????. نحن نقترح تقنية استخدام علامات المجال واللغة المشتركة في إعداد متعدد اللغات. نرسم ثلاث استنتاجات رئيسية من تجاربنا: (1) تدريب نظام متعدد اللغات عبر استغلال التشابه المعجمي على أساس الأسرة اللغوية يساعد في تحقيق متوسط ​​تحسن إجمالي ?. تساعد الرموز اللغوية على نظام المجال متعدد اللغات في الحصول على تحسين متوسط ​​متوسط ​​? ???? ?????? على أساس الأساس، (3) يساعد المرابط بشكل جيد على تحسين تحسين ?-?.? ???? ?????? للحصول على زوج لغة الاهتمام وبعد
نقدم إطار جيل الحوار الاصطناعي، Velocidapter، الذي يعالج مشكلة توافر Corpus لفهم الحوار. DEVERSITS VELOCIDAPTER DEDASTS من خلال محاكاة المحادثات الاصطناعية مجال حوار موجه نحو المهام، تتطلب كمية صغيرة من أعمال Bootstrapping لكل مجال جديد. نحن نقيم فعا لية إطار عملنا على DataSet من فهم الحوار الموجهة نحو المهام، MRCWOZ، الذي نحرشه من خلال التخلص من الأسئلة للحصول على فتحات في المطعم وسيارات الأجرة ومجالات الفنادق من مجموعة بيانات MultiWoz 2.2 (Zang et al.، 2020). نحن ندير تجارب ضمن إعداد موارد منخفضة، حيث نقعمنا نموذجا على الفريق، قم بضبطها على بيانات أصلية صغيرة أو على البيانات الاصطناعية الناتجة عن طريق الإطار الخاص بنا. يظهر VeloCidapter تحسينات كبيرة في استخدام Bertbase والمادة المستندة إلى المحولات كطرازات أساسية. نظل كذلك أن الإطار سهل الاستخدام من قبل مستخدمي المبتدئين واختتموا أن Velocidaper يمكن أن يساعد بشكل كبير في التدريب على الحوارات الموجهة نحو المهام، خاصة بالنسبة لمجالات الناشئة المنخفضة الموارد.
في هذه الورقة، نصف التجارب المصممة لتقييم تأثير الميزات المصنوعة من النسيج والعاطفة على الكشف عن الكلام الكراهية: مهمة تصنيف المحتوى النصي في فئات الكلام الكراهية أو غير الكراهية. تجري تجاربنا لمدة ثلاث لغات - اللغة الإنجليزية والسلوفين والهولندية - سواء في النطاق داخل المجال والمجازات، وتهدف إلى التحقيق في خطاب الكراهية باستخدام ميزات النموذجتين الظواهر اللغوية: أسلوب كتابة محتوى الوسائط الاجتماعية البغيضة تعمل كمستخدم Word كدالة على يد واحدة، وتعبير العاطفة في الرسائل البغيضة من ناحية أخرى. نتائج التجارب التي تحتوي على ميزات نموذج مجموعات مختلفة من هذه الظواهر تدعم فرضيتنا أن الميزات الأسيزية والعاطفية هي مؤشرات قوية لخطاب الكراهية. تظل مساهمتها مستمرة فيما يتعلق باختلاف المجال واللغة. نظظ أن مزيج من الميزات التي تتفوقت الظواهر المستهدفة على الكلمات والشخصيات N-Gram الميزات بموجب ظروف عبر المجال، وتوفر دفعة كبيرة لنماذج التعلم العميق، والتي تحصل حاليا على أفضل النتائج، عند دمجها في مجموعة واحدة وبعد
في هذه الورقة، نقترح نموذجا بسيطا للتكيف عن نطاق القليل من الرصاص لفهم القراءة. نحدد أولا هيكل الشبكة الفرعية اليانصيب ضمن نموذج مجال المصدر المستندة إلى المحولات عبر تشذيب درجة تدريجية. ثم، نحن فقط نغتنم الشبكة الفرعية اليانصيب، جزء صغير من المعلمات بأكملها، على بيانات المجال المستهدحة المشروح للتكيف. للحصول على المزيد من البرامج الفرعية القابلة للتكيف، نقدم إسناد ذوي الاهتمام الذاتي لوزن المعلمات، بما يتجاوز ببساطة تقليم أصغر معلمات الحجم، والذي يمكن أن ينظر إليه على أنه يجمع بين تشذيب الهيكل المنظم وتشذيم درجة غذائية بهدوء. تظهر النتائج التجريبية أن أسلوبنا تتفوق على التكيف النموذج الكامل للتوحيد على أربعة مجالات من خمسة مجالات عندما يكون فقط كمية صغيرة من البيانات المشروحة المتاحة للتكيف. علاوة على ذلك، فإن إدخال إيلاء الإهمال الذاتي الاحتياطيات معلمات أكثر لرؤوس الانتباه مهم في الشبكة الفرعية اليانصيب ويحسن أداء نموذج المجال الهدف. تكشف التحليلات الإضافية الخاصة بنا أنه، إلى جانب استغلال عدد أقل من المعلمات، فإن اختيار الشبكة الفرعية أمر بالغ الأهمية للفعالية.
أنظمة الترجمة الآلية عرضة لمواطيات المجال، خاصة في سيناريو منخفض الموارد.غالبا ما تكون ترجمات خارج النطاق ذات جودة رديئة وعرضة للهلوسة، بسبب تحيز التعرض والكشف بمثابة نموذج لغة.نعتمد نهجين لتخفيف هذه المشكلة: القائمة المختصرة المعجمية مقيدة بمحاذاة إ يماء IBM، وفرض الفرضية القائمة على التشابه.الأساليب هي رخيصة حسابية وتظهر النجاح على مجموعات اختبار الموارد المنخفضة من الموارد.ومع ذلك، فإن الطرق تفقد ميزة عند وجود بيانات كافية أو عدم تطابق مجال كبير جدا.يرجع ذلك إلى كل من نموذج IBM يفقد ميزته على المحاذاة العصبية المستفادة ضمنيا، وقضايا تجزئة الكلمات الفرعية للكلمات غير المرئية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا