طبقات محول خفيفة الوزن، وحدات يمكن إدراجها بين طبقات المحولات. يستكشف العمل الأخير باستخدام مثل هذه الطبقات للترجمة الآلية العصبية (NMT)، لتكييف النماذج المدربة مسبقا إلى مجالات جديدة أو أزواج لغة، والتدريب فقط مجموعة صغيرة من المعلمات لكل إعداد جديد (زوج لغة أو مجال). في هذا العمل، ندرس تكوين محولات اللغة والمجال في سياق الترجمة الآلية. نحن نهدف إلى الدراسة، 1) التكيف الفعال مع المعلمة إلى مجالات متعددة ولغات في وقت واحد (سيناريو الموارد الكاملة) و 2) نقل عبر اللغات في المجالات حيث تكون البيانات الموازية غير متوفرة لأزواج لغة معينة (سيناريو الموارد الجزئية). نجد أنه في سيناريو الموارد الجزئي مزيجا ساذجا من محولات محولات خاصة بالمجال وغالبا ما ينتج عن النسيان الكارثي باللغات المفقودة. ندرس طرق أخرى للجمع بين المحولات لتخفيف هذه المشكلة وتعظيم التحويل عبر اللغات. من خلال أفضل مجموعات محول لدينا، نحصل على تحسينات من 3-4 بلو في المتوسط لغات المصدر التي لا تملك بيانات داخل المجال. بالنسبة للغات المستهدفة دون بيانات داخل المجال، نحقق تحسن مماثل عن طريق الجمع بين المحولات بالترجمة الخلفي. تتوفر مواد تكميلية في https://tinyurl.com/r66stbxj.
Adapter layers are lightweight, learnable units inserted between transformer layers. Recent work explores using such layers for neural machine translation (NMT), to adapt pre-trained models to new domains or language pairs, training only a small set of parameters for each new setting (language pair or domain). In this work we study the compositionality of language and domain adapters in the context of Machine Translation. We aim to study, 1) parameter-efficient adaptation to multiple domains and languages simultaneously (full-resource scenario) and 2) cross-lingual transfer in domains where parallel data is unavailable for certain language pairs (partial-resource scenario). We find that in the partial resource scenario a naive combination of domain-specific and language-specific adapters often results in catastrophic forgetting' of the missing languages. We study other ways to combine the adapters to alleviate this issue and maximize cross-lingual transfer. With our best adapter combinations, we obtain improvements of 3-4 BLEU on average for source languages that do not have in-domain data. For target languages without in-domain data, we achieve a similar improvement by combining adapters with back-translation. Supplementary material is available at https://tinyurl.com/r66stbxj.
المراجع المستخدمة
https://aclanthology.org/
تعرف الهند باسم أرض العديد من الألسنة واللهجات. الترجمة الآلية العصبية (NMT) هي النهج الحديث الحالي للترجمة الآلية (MT) ولكنه يعمل بشكل أفضل فقط مع مجموعات البيانات الكبيرة التي تفتقر إليها اللغات الهندية عادة، مما يجعل هذا النهج غير قابل للاستمرار.
نقدم إطار جيل الحوار الاصطناعي، Velocidapter، الذي يعالج مشكلة توافر Corpus لفهم الحوار. DEVERSITS VELOCIDAPTER DEDASTS من خلال محاكاة المحادثات الاصطناعية مجال حوار موجه نحو المهام، تتطلب كمية صغيرة من أعمال Bootstrapping لكل مجال جديد. نحن نقيم فعا
في هذه الورقة، نصف التجارب المصممة لتقييم تأثير الميزات المصنوعة من النسيج والعاطفة على الكشف عن الكلام الكراهية: مهمة تصنيف المحتوى النصي في فئات الكلام الكراهية أو غير الكراهية. تجري تجاربنا لمدة ثلاث لغات - اللغة الإنجليزية والسلوفين والهولندية -
في هذه الورقة، نقترح نموذجا بسيطا للتكيف عن نطاق القليل من الرصاص لفهم القراءة. نحدد أولا هيكل الشبكة الفرعية اليانصيب ضمن نموذج مجال المصدر المستندة إلى المحولات عبر تشذيب درجة تدريجية. ثم، نحن فقط نغتنم الشبكة الفرعية اليانصيب، جزء صغير من المعلمات
أنظمة الترجمة الآلية عرضة لمواطيات المجال، خاصة في سيناريو منخفض الموارد.غالبا ما تكون ترجمات خارج النطاق ذات جودة رديئة وعرضة للهلوسة، بسبب تحيز التعرض والكشف بمثابة نموذج لغة.نعتمد نهجين لتخفيف هذه المشكلة: القائمة المختصرة المعجمية مقيدة بمحاذاة إ