ﻻ يوجد ملخص باللغة العربية
We introduce a concept to quantify the intrinsic causal contribution of each variable in a causal directed acyclic graph to the uncertainty or information of some target variable. By recursively writing each node as function of the noise terms, we separate the information added by each node from the one obtained from its ancestors. To interpret this information as a causal contribution, we consider structure-preserving interventions that randomize each node in a way that mimics the usual dependence on the parents and dont perturb the observed joint distribution. Using Shapley values, the contribution becomes independent of the ordering of nodes. We describe our contribution analysis for variance and entropy as two important examples, but contributions for other target metrics can be defined analogously.
We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearls Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to disco
We consider the problem of identifying the causal direction between two discrete random variables using observational data. Unlike previous work, we keep the most general functional model but make an assumption on the unobserved exogenous variable: I
We consider the problem of learning a causal graph over a set of variables with interventions. We study the cost-optimal causal graph learning problem: For a given skeleton (undirected version of the causal graph), design the set of interventions wit
Quantum addition channels have been recently introduced in the context of deriving entropic power inequalities for finite dimensional quantum systems. We prove a reverse entropy power equality which can be used to analytically prove an inequality con
We introduce a new Collaborative Causal Discovery problem, through which we model a common scenario in which we have multiple independent entities each with their own causal graph, and the goal is to simultaneously learn all these causal graphs. We s