ترغب بنشر مسار تعليمي؟ اضغط هنا

Cost-Optimal Learning of Causal Graphs

70   0   0.0 ( 0 )
 نشر من قبل Murat Kocaoglu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of learning a causal graph over a set of variables with interventions. We study the cost-optimal causal graph learning problem: For a given skeleton (undirected version of the causal graph), design the set of interventions with minimum total cost, that can uniquely identify any causal graph with the given skeleton. We show that this problem is solvable in polynomial time. Later, we consider the case when the number of interventions is limited. For this case, we provide polynomial time algorithms when the skeleton is a tree or a clique tree. For a general chordal skeleton, we develop an efficient greedy algorithm, which can be improved when the causal graph skeleton is an interval graph.

قيم البحث

اقرأ أيضاً

We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearls Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to disco ver the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $alpha$-approximation algorithm where $alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.
We consider the problem of identifying the causal direction between two discrete random variables using observational data. Unlike previous work, we keep the most general functional model but make an assumption on the unobserved exogenous variable: I nspired by Occams razor, we assume that the exogenous variable is simple in the true causal direction. We quantify simplicity using Renyi entropy. Our main result is that, under natural assumptions, if the exogenous variable has low $H_0$ entropy (cardinality) in the true direction, it must have high $H_0$ entropy in the wrong direction. We establish several algorithmic hardness results about estimating the minimum entropy exogenous variable. We show that the problem of finding the exogenous variable with minimum entropy is equivalent to the problem of finding minimum joint entropy given $n$ marginal distributions, also known as minimum entropy coupling problem. We propose an efficient greedy algorithm for the minimum entropy coupling problem, that for $n=2$ provably finds a local optimum. This gives a greedy algorithm for finding the exogenous variable with minimum $H_1$ (Shannon Entropy). Our greedy entropy-based causal inference algorithm has similar performance to the state of the art additive noise models in real datasets. One advantage of our approach is that we make no use of the values of random variables but only their distributions. Our method can therefore be used for causal inference for both ordinal and also categorical data, unlike additive noise models.
We introduce a concept to quantify the intrinsic causal contribution of each variable in a causal directed acyclic graph to the uncertainty or information of some target variable. By recursively writing each node as function of the noise terms, we se parate the information added by each node from the one obtained from its ancestors. To interpret this information as a causal contribution, we consider structure-preserving interventions that randomize each node in a way that mimics the usual dependence on the parents and dont perturb the observed joint distribution. Using Shapley values, the contribution becomes independent of the ordering of nodes. We describe our contribution analysis for variance and entropy as two important examples, but contributions for other target metrics can be defined analogously.
What is the optimal number of independent observations from which a sparse Gaussian Graphical Model can be correctly recovered? Information-theoretic arguments provide a lower bound on the minimum number of samples necessary to perfectly identify the support of any multivariate normal distribution as a function of model parameters. For a model defined on a sparse graph with $p$ nodes, a maximum degree $d$ and minimum normalized edge strength $kappa$, this necessary number of samples scales at least as $d log p/kappa^2$. The sample complexity requirements of existing methods for perfect graph reconstruction exhibit dependency on additional parameters that do not enter in the lower bound. The question of whether the lower bound is tight and achievable by a polynomial time algorithm remains open. In this paper, we constructively answer this question and propose an algorithm, termed DICE, whose sample complexity matches the information-theoretic lower bound up to a universal constant factor. We also propose a related algorithm SLICE that has a slightly higher sample complexity, but can be implemented as a mixed integer quadratic program which makes it attractive in practice. Importantly, SLICE retains a critical advantage of DICE in that its sample complexity only depends on quantities present in the information theoretic lower bound. We anticipate that this result will stimulate future search of computationally efficient sample-optimal algorithms.
We address the question of characterizing and finding optimal representations for supervised learning. Traditionally, this question has been tackled using the Information Bottleneck, which compresses the inputs while retaining information about the t argets, in a decoder-agnostic fashion. In machine learning, however, our goal is not compression but rather generalization, which is intimately linked to the predictive family or decoder of interest (e.g. linear classifier). We propose the Decodable Information Bottleneck (DIB) that considers information retention and compression from the perspective of the desired predictive family. As a result, DIB gives rise to representations that are optimal in terms of expected test performance and can be estimated with guarantees. Empirically, we show that the framework can be used to enforce a small generalization gap on downstream classifiers and to predict the generalization ability of neural networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا