ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Causal Graphs with Small Interventions

74   0   0.0 ( 0 )
 نشر من قبل Murat Kocaoglu
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearls Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to discover the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $alpha$-approximation algorithm where $alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.

قيم البحث

اقرأ أيضاً

We consider the problem of learning a causal graph over a set of variables with interventions. We study the cost-optimal causal graph learning problem: For a given skeleton (undirected version of the causal graph), design the set of interventions wit h minimum total cost, that can uniquely identify any causal graph with the given skeleton. We show that this problem is solvable in polynomial time. Later, we consider the case when the number of interventions is limited. For this case, we provide polynomial time algorithms when the skeleton is a tree or a clique tree. For a general chordal skeleton, we develop an efficient greedy algorithm, which can be improved when the causal graph skeleton is an interval graph.
We introduce a concept to quantify the intrinsic causal contribution of each variable in a causal directed acyclic graph to the uncertainty or information of some target variable. By recursively writing each node as function of the noise terms, we se parate the information added by each node from the one obtained from its ancestors. To interpret this information as a causal contribution, we consider structure-preserving interventions that randomize each node in a way that mimics the usual dependence on the parents and dont perturb the observed joint distribution. Using Shapley values, the contribution becomes independent of the ordering of nodes. We describe our contribution analysis for variance and entropy as two important examples, but contributions for other target metrics can be defined analogously.
Promising results have driven a recent surge of interest in continuous optimization methods for Bayesian network structure learning from observational data. However, there are theoretical limitations on the identifiability of underlying structures ob tained from observational data alone. Interventional data provides much richer information about the underlying data-generating process. However, the extension and application of methods designed for observational data to include interventions is not straightforward and remains an open problem. In this paper we provide a general framework based on continuous optimization and neural networks to create models for the combination of observational and interventional data. The proposed method is even applicable in the challenging and realistic case that the identity of the intervened upon variable is unknown. We examine the proposed method in the setting of graph recovery both de novo and from a partially-known edge set. We establish strong benchmark results on several structure learning tasks, including structure recovery of both synthetic graphs as well as standard graphs from the Bayesian Network Repository.
Discovering causal structures from data is a challenging inference problem of fundamental importance in all areas of science. The appealing scaling properties of neural networks have recently led to a surge of interest in differentiable neural networ k-based methods for learning causal structures from data. So far differentiable causal discovery has focused on static datasets of observational or interventional origin. In this work, we introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process. Our method significantly reduces the required number of interactions compared with random intervention targeting and is applicable for both discrete and continuous optimization formulations of learning the underlying directed acyclic graph (DAG) from data. We examine the proposed method across a wide range of settings and demonstrate superior performance on multiple benchmarks from simulated to real-world data.
We consider the problem of identifying the causal direction between two discrete random variables using observational data. Unlike previous work, we keep the most general functional model but make an assumption on the unobserved exogenous variable: I nspired by Occams razor, we assume that the exogenous variable is simple in the true causal direction. We quantify simplicity using Renyi entropy. Our main result is that, under natural assumptions, if the exogenous variable has low $H_0$ entropy (cardinality) in the true direction, it must have high $H_0$ entropy in the wrong direction. We establish several algorithmic hardness results about estimating the minimum entropy exogenous variable. We show that the problem of finding the exogenous variable with minimum entropy is equivalent to the problem of finding minimum joint entropy given $n$ marginal distributions, also known as minimum entropy coupling problem. We propose an efficient greedy algorithm for the minimum entropy coupling problem, that for $n=2$ provably finds a local optimum. This gives a greedy algorithm for finding the exogenous variable with minimum $H_1$ (Shannon Entropy). Our greedy entropy-based causal inference algorithm has similar performance to the state of the art additive noise models in real datasets. One advantage of our approach is that we make no use of the values of random variables but only their distributions. Our method can therefore be used for causal inference for both ordinal and also categorical data, unlike additive noise models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا