ﻻ يوجد ملخص باللغة العربية
We consider the problem of identifying the causal direction between two discrete random variables using observational data. Unlike previous work, we keep the most general functional model but make an assumption on the unobserved exogenous variable: Inspired by Occams razor, we assume that the exogenous variable is simple in the true causal direction. We quantify simplicity using Renyi entropy. Our main result is that, under natural assumptions, if the exogenous variable has low $H_0$ entropy (cardinality) in the true direction, it must have high $H_0$ entropy in the wrong direction. We establish several algorithmic hardness results about estimating the minimum entropy exogenous variable. We show that the problem of finding the exogenous variable with minimum entropy is equivalent to the problem of finding minimum joint entropy given $n$ marginal distributions, also known as minimum entropy coupling problem. We propose an efficient greedy algorithm for the minimum entropy coupling problem, that for $n=2$ provably finds a local optimum. This gives a greedy algorithm for finding the exogenous variable with minimum $H_1$ (Shannon Entropy). Our greedy entropy-based causal inference algorithm has similar performance to the state of the art additive noise models in real datasets. One advantage of our approach is that we make no use of the values of random variables but only their distributions. Our method can therefore be used for causal inference for both ordinal and also categorical data, unlike additive noise models.
As quantum computing and networking nodes scale-up, important open questions arise on the causal influence of various sub-systems on the total system performance. These questions are related to the tomographic reconstruction of the macroscopic wavefu
We consider the problem of learning a causal graph over a set of variables with interventions. We study the cost-optimal causal graph learning problem: For a given skeleton (undirected version of the causal graph), design the set of interventions wit
The ultimate goal of cognitive neuroscience is to understand the mechanistic neural processes underlying the functional organization of the brain. Key to this study is understanding structure of both the structural and functional connectivity between
We introduce a concept to quantify the intrinsic causal contribution of each variable in a causal directed acyclic graph to the uncertainty or information of some target variable. By recursively writing each node as function of the noise terms, we se
In this paper we treat both forms of probabilistic inference, estimating marginal probabilities of the joint distribution and finding the most probable assignment, through a unified message-passing algorithm architecture. We generalize the Belief Pro