ﻻ يوجد ملخص باللغة العربية
Obtaining a detailed understanding of strong-field double ionisation of many-electron systems (heavy atoms and molecules) remains a challenging task. By comparing experimental and theoretical results in the mid-IR regime, we have unambiguously identified the transition from non-sequential (e,2e) to sequential double ionisation in Xe and shown that it occurs at an intensity below $10^{14}$ Wcm$^{-2}$. In addition, our data demonstrate that ionisation from the Xe 5s orbital is decisive at low intensities. Moreover, using the acetylene molecule, we propose how sequential double ionisation in the mid-IR can be used to study molecular dynamics and fragmentation on unprecedented few-femtosecond timescales.
At intensities below-the-recollision threshold, we show that re-collision-induced excitation with one electron escaping fast after re-collision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most import
Fully accounting for non-dipole effects in the electron dynamics, double ionization is studied for He driven by a near-infrared laser field and for Xe driven by a mid-infrared laser field. Using a three-dimensional semiclassical model, the average su
We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields an
We describe first-principles in-plane calculations of non-sequential triple ionization (NSTI) of atoms in a linearly polarized intense laser pulse. In a fully classically correlated description, all three electrons respond dynamically to the nuclear
We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution