ﻻ يوجد ملخص باللغة العربية
Fully accounting for non-dipole effects in the electron dynamics, double ionization is studied for He driven by a near-infrared laser field and for Xe driven by a mid-infrared laser field. Using a three-dimensional semiclassical model, the average sum of the electron momenta along the propagation direction of the laser field is computed. This sum is found to be an order of magnitude larger than twice the average electron momentum along the propagation direction of the laser field in single ionization. Moreover, the average sum of the electron momenta in double ionization is found to be maximum at intensities smaller than the intensities satisfying previously predicted criteria for the onset of magnetic field effects. It is shown that strong recollisions are the reason for this unexpectedly large value of the sum of the momenta along the direction of the magnetic component of the Lorentz force.
Using a three-dimensional semiclassical model, we study double ionization for strongly-driven He fully accounting for magnetic field effects. For linearly and slightly elliptically polarized laser fields, we show that recollisions and the magnetic fi
At intensities below-the-recollision threshold, we show that re-collision-induced excitation with one electron escaping fast after re-collision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most import
Consensus has been reached that recollision, as the most important post-tunneling process, is responsible for nonsequential double ionization process in intense infrared laser field, however, its effect has been restricted to interaction between the
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr
We describe first-principles in-plane calculations of non-sequential triple ionization (NSTI) of atoms in a linearly polarized intense laser pulse. In a fully classically correlated description, all three electrons respond dynamically to the nuclear