ﻻ يوجد ملخص باللغة العربية
We describe first-principles in-plane calculations of non-sequential triple ionization (NSTI) of atoms in a linearly polarized intense laser pulse. In a fully classically correlated description, all three electrons respond dynamically to the nuclear attraction, the pairwise e-e repulsions and the laser force throughout the duration of a 780nm laser pulse. Nonsequential ejection is shown to occur in a multi-electron, possibly multi-cycle and multi-dimensional, rescattering sequence that is coordinated by a number of sharp transverse recollimation impacts.
Fully accounting for non-dipole effects in the electron dynamics, double ionization is studied for He driven by a near-infrared laser field and for Xe driven by a mid-infrared laser field. Using a three-dimensional semiclassical model, the average su
We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution
We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields an
At intensities below-the-recollision threshold, we show that re-collision-induced excitation with one electron escaping fast after re-collision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most import
We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational meth