ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal features in sequential and nonsequential two-photon double ionization of helium

135   0   0.0 ( 0 )
 نشر من قبل Renate Pazourek
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.



قيم البحث

اقرأ أيضاً

192 - J. Feist , S. Nagele , R. Pazourek 2008
We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational meth od is based on the solution of the time-dependent Schroedinger equation and subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent calculations and discuss the emerging similarities and differences. We investigate the role of electronic correlation in the representation of the two-electron continuum states, which are used to extract the ionization yields from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape on the cross sections in time-dependent calculations and address convergence issues.
We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort XUV pulses with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for puls es with mean frequencies in the so-called sequential regime (photon energy above 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct (nonsequential) and indirect (sequential) double photo-ionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route toward measuring the pulse duration of FEL pulses.
Multiphoton ionization provides a clear window into the nature of electron correlations in the helium atom. In the present study, the final state energy range extends up to the region near the $N=2$ and $N=3$ ionization thresholds, where two-photon i onization proceeds via continuum intermediate states above the lowest threshold. Our calculations are performed using multichannel quantum defect theory (MQDT) and the streamlined R-matrix method. The sum and integration over all intermediate states in the two-photon ionization amplitude is evaluated using the inhomogeneous R-matrix method developed by Robicheaux and Gao. The seamless connection of that method with MQDT allows us to present high resolution spectra of the final state Rydberg resonances. Our analysis classifies the resonances above the $N=2$ threshold in terms of their group theory quantum numbers. Their dominant decay channels are found to obey the previously conjectured propensity rule far more weakly for these even parity states than was observed for the odd-parity states relevant to single photon ionization.
Consensus has been reached that recollision, as the most important post-tunneling process, is responsible for nonsequential double ionization process in intense infrared laser field, however, its effect has been restricted to interaction between the first ionized electron and the residual univalent ion so far. Here we identify the key role of recollision between the second ionized electron and the divalent ion in the below-threshold nonsequential double ionization process by introducing a Coulomb-corrected quantum-trajectories method, which enables us to well reproduce the experimentally observed cross-shaped and anti-correlated patterns in correlated two-electron momentum distributions, and also the transition between these two patterns. Being significantly enhanced relatively by the recapture process, recolliding trajectories of the second electron excited by the first- or third-return recolliding trajectories of the first electron produce the cross-shaped or anti-correlated distributions, respectively. And the transition is induced by the increasing contribution of the third return with increasing pulse duration. Our work provides new insight into atomic ionization dynamics and paves the new way to imaging of ultrafast dynamics of atoms and molecules in intense laser field.
We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1 state. The first color is the 15th harmonic of a tunable titanium sapphire laser, while the second color is the fundamental laser radiation. Our method uses phase-locked hig h-order harmonics to determine the {it phase} of the two-photon process by interferometry. The measurement of the two-photon ionization phase variation as a function of detuning from the resonance and intensity of the dressing field allows us to determine the intensity dependence of the transition energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا