ﻻ يوجد ملخص باللغة العربية
At intensities below-the-recollision threshold, we show that re-collision-induced excitation with one electron escaping fast after re-collision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most important mechanisms of non-sequential double ionization, for strongly-driven He at 400 nm. Slingshot-NSDI is a general mechanism present for a wide range of low intensities and pulse durations. Anti-correlated two-electron escape is its striking hallmark. This mechanism offers an alternative explanation of anti-correlated two-electron escape obtained in previous studies.
Fully accounting for non-dipole effects in the electron dynamics, double ionization is studied for He driven by a near-infrared laser field and for Xe driven by a mid-infrared laser field. Using a three-dimensional semiclassical model, the average su
Obtaining a detailed understanding of strong-field double ionisation of many-electron systems (heavy atoms and molecules) remains a challenging task. By comparing experimental and theoretical results in the mid-IR regime, we have unambiguously identi
We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields an
Using a semi-classical model, we investigate frustrated double ionization (FDI) in $mathrm{D_3^+}$, a two-electron triatomic molecule, when driven by an intense, linearly polarized, near-infrared (800 nm) laser field. We compute the kinetic energy re
We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution