ترغب بنشر مسار تعليمي؟ اضغط هنا

مساهمة في إزالة قساوة المياه باستخدام الرماد المتشكل من المواقد الحطبية

Contribution in removal water hardness by soda ash which formed from hearth firewood

1611   0   0   0.0 ( 0 )
 تاريخ النشر 2018
  مجال البحث كيمياء
والبحث باللغة العربية
 تمت اﻹضافة من قبل عبدالله بريمو




اسأل ChatGPT حول البحث

تهدف الدراسة إلى إمكانية استخدام الرماد المتشكل من حرق الحطب و مخلفات التقليم المختلفة في إزالة قساوة المياه . تم في هذا البحث توصيف الرماد ( ناتج عن حرق مخلفات من شجرتي البلوط و السنديان ) لتحديد نسب المكونات الداخلة فيه باستخدام عدة تقانات منها XRD و مطيافية اللهب و المعايرات الحجمية و غيرها . حدد زمن خلط الطورين المثالي عبر وضع كمية محددة من الرماد إلى مياه شديدة القساوة حيث تم معايرة قساوة المياه خلال أزمنة مختلفة ( 0.5,1,2,3,4,5) ساعة و كان الزمن المثالي لخلط الطورين عند3ساعات . عينت نسب الإزالة و ذلك بتثبيت زمن خلط الطورين و بإضافة بشكل مباشر الكميات التالية من الرماد ( 0.5;1;2;3;5;7;10;15;20;25 ) غرام إلى 200 مل من مياه شديدة القساوة و تبين أن نسبة الإزالة تزداد بشكل طردي بازدياد كمية الرماد المضاف و بلغت نسبة الإزالة ما يقارب 50% عند استخدام واحد غرام من الرماد حتى الوصول إلى نسبة إزالة كاملة قدرها 100% عند استخدام 25 غرام من الرماد .



المراجع المستخدمة
ﻻ يوجد مراجع
قيم البحث

اقرأ أيضاً

تهدف الدراسة إلى إمكانية استخدام الرماد المتشكل من حرق الحطب و مخلفات التقليم المختلفة في إزالة قساوة المياه . تم في هذا البحث توصيف الرماد ( ناتج عن حرق مخلفات من شجرتي البلوط و السنديان ) لتحديد نسب المكونات الداخلة فيه باستخدام عدة تقانات منها XR D و مطيافية اللهب و المعايرات الحجمية و غيرها . حدد زمن خلط الطورين المثالي عبر وضع كمية محددة من الرماد إلى مياه شديدة القساوة حيث تم معايرة قساوة المياه خلال أزمنة مختلفة ( 0.5,1,2,3,4,5) ساعة و كان الزمن المثالي لخلط الطورين عند 3ساعات . عينت نسب الإزالة و ذلك بتثبيت زمن خلط الطورين و بإضافة بشكل مباشر الكميات التالية من الرماد ( 0.5;1;2;3;5;7;10;15;20;25 ) غرام إلى 200 مل من مياه شديدة القساوة و تبين أن نسبة الإزالة تزداد بشكل طردي بازدياد كمية الرماد المضاف و بلغت نسبة الإزالة ما يقارب 50% عند استخدام واحد غرام من الرماد حتى الوصول إلى نسبة إزالة كاملة قدرها 100% عند استخدام 25 غرام من الرماد .
درست تغيرات معامل توزع الرصاص و النحاس في منظومة ذات طورين [سائل (مياه ملوثة بالرصاص و النحاس) - صلب (فوسفات خام سورية )] و ذلك بتابعية العوامل التالية زمن خلط الطورين, الحجم الحبيبي للطورالصلب, تغير قيم الأس الهيدروجيني PH, تركيز العنصر الملوث, تركي ز عنصر الكالسيوم كعنصر منافس للمواقع المتاحة على الطور الصلب, النسبة v/m كنسبة تمثل حجم الطور المائي على كتلة الطور الصلب. تراوحت نسبة إزالة الرصاص من عينات المحاليل المائية المحضرة مخبريا ﹰ91,57-99,95 % و كانت أفضل الشروط للحصول على أعلى نسبة إزالة للرصاص كالتالي: درجة حموضة تتراوح بين 6,63-10,11 و زمن خلط للطورين يصل إلى 60m و بنسبة V/m تبلغ .1000 و تراوحت نسبة إزالة النحاس من عينات المحاليل المائية المحضرة مخبرياﹰ -95,27 99,96% و كانت أفضل الشروط للحصول على أعلى نسبة إزالة للنحاس كالتالي: درجة حموضة تتراوح بين 7,89-11,01 و زمن خلط للطورين يصل 60m و بنسبة V/mتبلغ.1000 جرى تطبيق الشروط المثالية التي تم الحصول عليها مخبرياﹰ على عينات مأخوذه من مياه الدخل لوحدة المعالجة في شركة مصفاة بانياس و مياه دريناج مأخوذه من الشركة السورية لنقل النفط فكانت نسبة الإزالة للرصاص ( (100%,99 % و كانت نسبة إزالة النحاس ( (100%,98 % .
تهدف هذه الدراسة إلى دراسة فعالية كل من (كلوريد الحديد, الرماد, تفل القهوة) في إزالة الفوسفور من مياه صرف مخابر مرفأ اللاذقية التي يتم تجميعها في حفرة تفتيش منفصلة, و تم إجراء تجارب مخبرية على مياه تحوي تراكيز عالية من الفوسفور سواء أكانت مياه صرف حق يقية أو محاليل عيارية من أوكسيد الفوسفور المخبري. حيث تم تجريب كلوريد الحديد عند جرعات (FeCl3/P=(0-5 كمعدل وزني ليعط نسب فعالية %(-8070) بما يتوافق مع قيمة الـ pH و تم تحديد زمن إعادة تحرر الفوسفور بعد (10 - 12) ساعة من بدء الترسيب, كما تم تجريب الرماد كعامل ممتز بجرعات (Ash/P=(2-4.5 كمعدل وزني لتعط نسب فعالية وصلت إلى 98% و لوحظ إعادة تحرر الفوسفور بعد 11 ساعة مع تحديد قيم الـpH الموافقة لذلك, أما تفل القهوة فعند إضافته بجرعات (Coffee dreg/P =(3-10 كمعدل وزني حقق نسبة إزالة تتراوح % (40 - 99) و عاد للتحرر بعد 24 ساعة و بنتيجة هذه التجارب تم اقتراح الحل الأمثل من الناحية الاقتصادية بالنسبة لحالة الدراسة.
يعالج هذا البحث الحد من التآكل و الترسب المتشكل في الأوساط المائية الآكالة عن طريق إضافة موانع تآكل و ترسب مثل كربونات الزنك و حمض هيدروكسيل ايتيلين دي فوسفوريك إلى الماء. تتجلى مشاكل التآكل و الترسب بشكل كبير في مجال هيدروليك الموائع , مثلا عند اس تخدام أوساط مائية آكالة للمعادن و غير معالجة ب موانع تآكل في دارات التبريد فان احتمال تشكل مناطق تآكلية و ترسبات تكون عالية, حيث يتآكل معدن الفولاذ و النحاس في دارات التبريد عند التماس مع الوسط المائي الحاوي مكونات آكالة مثل غاز الأوكسجين , أحادي اوكسيد الكربون , غاز الكلور وشوارد الكلوريد المنحل. تتمثل الحماية من التآكل عن طريق تشكيل غلاف HEDA و شوارد الزنك التي ما تلبث أن تتفاعل مع مكونات الوسط المائي الأكال , أما الحماية من الترسب تتجلى بتشكيل معقد مع الكالسيوم والمغنزيوم ذي انحلالية مرتفعة في الماء مع ارتفاع درجة الحرارة
أجريت سلسلة من تجارب التخثير الكهربائي لتقييم عملية إزالـة الفحـوم الهيدروجينيـة العطريـة المتعددة الحلقات (PAHs) من المياه باستخدام مسارٍ من الألمنيوم. درس تأثير كلٍ من درجة الحموضـة الابتدائية و كثافة التيار الكهربائي و زمن التحلل الكهربائي و الت ركيز الأولي الكلـي لمركبـات الــ PAH و نوع الكهرليت و تركيزه في هذه المعالجة، للوصول إلى كفاءة الإزالة المثلى. أشارت النتائج إلى فعاليـة استخدام التخثير الكهربائي بوجود مصعد و مهبط من الألمنيوم في نزع هذه الملوثـات. وجـد أن عمليـة المعالجة تتأثر بشدةٍ بكثافة التيار الكهربائي و بتركيز الملوثات، و لوحظ حدوث ازديادٍ كبير في معدل الإزالة عند استخدام كلوريد الصوديوم ككهرليت نتيجة حدوث عمليات أكسدة غير مباشرة بواسطة الهيبوكلوريت المتشكل لاحقاً خلال عملية المعالجة. بينت النتائج الجدوى العملية من استخدام التخثير الكهربائي بوصفها تقنية واعدة لمعالجة تلوث المياه بالفحوم الهيدروجينية العطرية المتعددة الحلقات.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا