أظهرت LMS المدربة مسبقا أداء مثير للإعجاب على مهام NLP المصب، لكننا لم ننشئ بعد فهم واضح للتطور عندما يتعلق الأمر بمعالجة المعلومات والاحتفاظ بها وتطبيقها المقدمة في مدخلاتها. في هذه الورقة، نتعامل مع مكون من هذه المسألة من خلال دراسة قدرة النماذج على نشر معلومات السياق ذات الصلة في مواجهة مشتت المحتوى. نقدم نماذج مع مهام كتين تتطلب استخدام معلومات السياق النقدي، وإدخال محتوى مشتت لاختبار مدى احتفاظ النماذج بقوة واستخدام هذه المعلومات الهامة للتنبؤ بها. نحن أيضا التلاعب بشكل منهجي بطبيعة هؤلاء الملذات، لإلقاء الضوء على ديناميات استخدام النماذج من العظة السياقية. نجد أنه على الرغم من أن النماذج تظهر في سياقات بسيطة لجعل التنبؤات بناء على فهم الحقائق ذات الصلة وتطبيقها من السياق المسبق، فإن وجود محتوى مشتت ولكنه غير ذي صرف له تأثير واضح في التنبؤات النموذجية المربكة. على وجه الخصوص، تظهر النماذج عرضة بشكل خاص لعوامل التشابه الدلالي وموقف كلمة. تتسق النتائج مع استنتاج مفادها أن تنبؤات LM مدفوعة بجزء كبير من العظة السياقية السطحية، وليس عن طريق تمثيلات قوية لمعنى السياق.
Pre-trained LMs have shown impressive performance on downstream NLP tasks, but we have yet to establish a clear understanding of their sophistication when it comes to processing, retaining, and applying information presented in their input. In this paper we tackle a component of this question by examining robustness of models' ability to deploy relevant context information in the face of distracting content. We present models with cloze tasks requiring use of critical context information, and introduce distracting content to test how robustly the models retain and use that critical information for prediction. We also systematically manipulate the nature of these distractors, to shed light on dynamics of models' use of contextual cues. We find that although models appear in simple contexts to make predictions based on understanding and applying relevant facts from prior context, the presence of distracting but irrelevant content has clear impact in confusing model predictions. In particular, models appear particularly susceptible to factors of semantic similarity and word position. The findings are consistent with the conclusion that LM predictions are driven in large part by superficial contextual cues, rather than by robust representations of context meaning.
المراجع المستخدمة
https://aclanthology.org/
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ
في هذه الدراسة، نقترح طريقة تعلم الإشراف على الذات التي تطبق تمثيلات معنى الكلمات في السياق من نموذج لغة ملثم مسبقا مسبقا. تعد تمثيلات الكلمات هي الأساس للدلالات المعجمية في السياق وتقديرات التشابه المنصوصية الدلالية غير المرفوعة (STS). تقوم الدراسة
تستفيد نماذج اللغة الكبيرة من التدريب بكمية كبيرة من النص غير المسبق، مما يمنحهم قدرات توليد بطلاقة ومتنوعة بشكل متزايد.ومع ذلك، فإن استخدام هذه النماذج لتوليد النص الذي يأخذ في الاعتبار السمات المستهدفة، مثل قطبية المعالم أو مواضيع محددة، لا يزال يم
تحدث نماذج اللغات القائمة على المحولات الحديثة ثورة في NLP. ومع ذلك، كانت الدراسات الحالية في النمذجة اللغوية مع بيرت تقتصر في الغالب على المواد باللغة الإنجليزية ولا تدفع اهتماما كافيا لمعرفة اللغة الضمنية باللغة، مثل الأدوار الدلالية والتفترض واللب
نماذج اللغة المحددة مسبقا (PTLMS) تسفر عن الأداء الحديث في العديد من مهام معالجة اللغة الطبيعية، بما في ذلك بناء الجملة والدلالات والعموم.في هذه الورقة، نركز على التعرف على أي مدى تلتقط PTLMS السمات الدلالية وقيمها، على سبيل المثال، الارتباط بين القي