ترغب بنشر مسار تعليمي؟ اضغط هنا

محاذاة السمة: التحكم في جيل النص من نماذج اللغة المدربة مسبقا

Attribute Alignment: Controlling Text Generation from Pre-trained Language Models

309   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تستفيد نماذج اللغة الكبيرة من التدريب بكمية كبيرة من النص غير المسبق، مما يمنحهم قدرات توليد بطلاقة ومتنوعة بشكل متزايد.ومع ذلك، فإن استخدام هذه النماذج لتوليد النص الذي يأخذ في الاعتبار السمات المستهدفة، مثل قطبية المعالم أو مواضيع محددة، لا يزال يمثل تحديا.نقترح طريقة بسيطة ومرنة للسيطرة على جيل النص عن طريق محاذاة تمثيلات سمة Deventangled.على النقيض من الجهود الأخيرة التي يبذلها الجهود المبينة في تدريب تمييزي على توزيع مستوى الرمز المميز لسمة، نستخدم نفس البيانات لتعلم وظيفة المحاذاة لتوجيه نموذج اللغة غير المستخدمة مسبقا وغير الخاضعة للرقابة لإنشاء نصوص مع سمة الهدف دون تغييرالمعلمات نموذج اللغة الأصلية.نقوم بتقييم طريقتنا على توليد المعنويات والموضوع، وإظهار مكاسب أداء كبيرة على الطرق السابقة مع الاحتفاظ بالطلاقة والتنوع.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الدراسة، نقترح طريقة تعلم الإشراف على الذات التي تطبق تمثيلات معنى الكلمات في السياق من نموذج لغة ملثم مسبقا مسبقا. تعد تمثيلات الكلمات هي الأساس للدلالات المعجمية في السياق وتقديرات التشابه المنصوصية الدلالية غير المرفوعة (STS). تقوم الدراسة السابقة بتحويل التمثيلات السياقية التي تستخدم تضمين كلمة ثابتة لإضعاف الآثار المفرطة لمعلومات السياقية. على النقيض من ذلك، تستمد الأسلوب المقترح على تمثيلات كلمة معنى في السياق مع الحفاظ على معلومات السياق المفيدة سليمة. على وجه التحديد، تتعلم طريقةنا الجمع بين مخرجات الطبقات المخفية المختلفة التي تستخدم الانتباه عن الذات من خلال التعلم الذاتي الخاضع للإشراف مع كائن تدريب تلقائيا تلقائيا. لتقييم أداء النهج المقترح، أجرينا تجارب مقارنة باستخدام مجموعة من المهام القياسية. تؤكد النتائج أن تمثيلاتنا أظهرت أداء تنافسي مقارنة بسلطة حديثة من الأسلوب لتحويل التمثيلات السياقية للمهام الدلالية المعجمية السياقة وتفوقها على تقدير STS.
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ داء PRLMS. ومع ذلك، بالنظر إلى أن أدلة المسكنات المستفادة مقدمة وإثباتها في التدريب المسبق، فإن الطرق السابقة تستغرق وقتا طويلا ونقص المرونة. لتخفيف الإزعاج، تقدم هذه الورقة طريقة رواية تمتد دقيقة لضبط PRLMS، مما يسهل إعداد SPES يتم تحديده على تكيفه بواسطة مهام معينة من المصب أثناء مرحلة الضبط الجميلة. بالتفصيل، سيتم تجزئة أي جمل تتم معالجتها من قبل PRLM في تمديدات متعددة وفقا لقاموس ما قبل العينات. ثم سيتم إرسال معلومات التجزئة من خلال وحدة CNN الهرمية مع مخرجات التمثيل من PRLM وتولد في نهاية المطاف تمثيلا محسن. تشير التجارب على معيار الغراء إلى أن طريقة ضبط الدقيقة المقترحة تعزز بشكل كبير PRLM، وفي الوقت نفسه، تقدم المزيد من المرونة بطريقة فعالة.
تحظى طرازات اللغة واسعة النطاق (LMS) في كورسورا هائلة من النص، مثل GPT-2، هي مولدات نصية مفتوحة قوية. ومع ذلك، نظرا لأن الفحص المنهجي الخاص بنا يكشف، فمن لا يزال يمثل تحديا لهذه النماذج لتوليد ممرات طويلة طويلة متماسكة من النص (على سبيل المثال، 1000 رمز)، خاصة عند ضبط النماذج بشكل جيد إلى المجال المستهدف على كائن صغير. تندرج أساليب التخطيط السابقة عند إيلاء إيناء نص طويل في المجالات المختلفة. للتغلب على القيود، نقترح طريقة بسيطة ولكنها فعالة لتوليد النص بطريقة تقدمية، مستوحاة من خلال توليد الصور من أدنى مستوى إلى دقة عالية. تقوم طريقةنا أولا بإنتاج الكلمات الرئيسية للمحتوى الخاص بالمجال ومن ثم تقوم بتطريصها تدريجيا في مقاطع كاملة في مراحل متعددة. يسمح التصميم البسيط لنهجنا الاستفادة من LMS المحدد في كل مرحلة وتكييف فعال مع أي مجال مستهدف معين فقط مجموعة صغيرة من الأمثلة. نقوم بإجراء دراسة تجريبية شاملة مع مجموعة واسعة من مقاييس التقييم، وإظهار أن نهجنا يحسن بشكل كبير على LMS الكبيرة التي تم ضبطها بشكل كبير وأساليب التخطيط والمنشدة المختلفة من حيث الجودة وكفاءة العينات. يتحقق التقييم البشري أيضا أن أجيال النماذج لدينا أكثر متماسكة.
كما تم كشف النقاب عنها أن نماذج اللغة المدربة مسبقا (PLMS) هي إلى حد ما قادر على الاعتراف بالمفاهيم النحوية باللغة الطبيعية، فقد تم بذل الكثير من الجهد لتطوير طريقة لاستخراج التقييم الكامل (الثنائي) من PLMS دون تدريب محللين منفصلين. نحن نحسن على هذا النموذج من خلال اقتراح طريقة قائمة على الرسم البياني القائمة على الرسم البياني وتقنية فرعية فعالة من أعلى كوب. علاوة على ذلك، نوضح أنه يمكننا توسيع نطاق تطبيق النهج في إعدادات متعددة اللغات. على وجه التحديد، نظير على أنه من خلال تطبيق طريقتنا على مقدمي اللغات متعددة اللغات، يصبح من الممكن أن يحفز على التقييم غير التافه من الجمل من تسع لغات بطريقة متكاملة وغير مرغقة بلغة، وتحصل على أداء متفوقة أو مماثلة لتلك الخاصة ب PCFGS غير المعروضة. نحن نتحقق أيضا من أن نهجنا قوي للتحويل عبر اللغات. أخيرا، نقدم التحليلات على الأعمال الداخلية لطرأتنا. على سبيل المثال، نكتشف رؤوس الانتباه العالمية التي هي حساسة باستمرار للحصول على معلومات النحوية بغض النظر عن لغة الإدخال.
نماذج اللغة المحددة مسبقا (PTLMS) تسفر عن الأداء الحديث في العديد من مهام معالجة اللغة الطبيعية، بما في ذلك بناء الجملة والدلالات والعموم.في هذه الورقة، نركز على التعرف على أي مدى تلتقط PTLMS السمات الدلالية وقيمها، على سبيل المثال، الارتباط بين القي مة الغنية والعالية الصافية.نستخدم ptlms للتنبؤ الرموز الملثمين باستخدام أنماط وقوائم العناصر من Wikidata من أجل التحقق من مدى احتمال ترميز PTLMS السمات الدلالية جنبا إلى جنب مع قيمها.مثل هذه الاستنتاجات القائمة على دلالات بديهية للبشر كجزء من فهم لغتنا.نظرا لأن PTLMS يتم تدريبها على كمية كبيرة من بيانات ويكيبيديا، فسوف نفترض أنها يمكن أن تولد تنبؤات مماثلة، ومع ذلك تكشف نتائجنا أن PTLMS لا تزال أسوأ بكثير من البشر في هذه المهمة.نوضح الأدلة والتحليل في شرح كيفية استغلال منهجيةنا لدمج سياق ودواني أفضل في PTLMS باستخدام قواعد المعرفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا