Dual-Encoders هي آلية واعدة لاسترجاع الإجابة في أنظمة الإجابة على الأسئلة (QA). حاليا معظم التشفير المزدوج التقليدية تعلم التمثيل الدلالي للأسئلة والأجوبة فقط من خلال نقاط مطابقة. اقترح الباحثون تقديم ميزات تفاعلات ضمان الجودة في وظيفة التهديف ولكن بتكلفة منخفضة الكفاءة في مرحلة الاستدلال. للحفاظ على الترميز المستقل للأسئلة والأجوبة أثناء مرحلة الاستدلال، يتم تقديم التشفير التلقائي التلقائي بشكل أكبر لإعادة بناء الإجابات (الأسئلة) من Asceddings من السؤال (الإجابة) بمثابة مهمة مساعدة لتعزيز تفاعل QA في مرحلة التدريب في مرحلة التدريب في مرحلة التدريب في مرحلة التدريب في مرحلة التدريب. ومع ذلك، فإن احتياجات جيل النص واسترجاع الإجابة مختلفة، مما يؤدي إلى صلابة في التدريب. في هذا العمل، نقترح إطارا لتعزيز نموذج المشفرين المزدوجين مع الإجابة على السؤال وآلية محاذاة هندسية جديدة (GAM) لمواءمة الهندسة من المدينات من الترميز المزدوج مع ذلك من التشفير عبر التشفير. تظهر النتائج التجريبية الواسعة أن إطارنا يحسن بشكل كبير من طراز الترميز المزدوج وتفوق على الطريقة التي تظهر على مجموعة بيانات استرجاع الإجابة المتعددة.
Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets.
المراجع المستخدمة
https://aclanthology.org/
في التعليم، أصبحت أسئلة الاختبار أداة مهمة لتقييم معرفة الطلاب.ومع ذلك، فإن إعداد هذه الأسئلة يدويا هو مهمة مملة، وبالتالي تم اقتراح توليد السؤال التلقائي كديل ممكن.حتى الآن، ركزت الغالبية العظمى من الأبحاث على توليد نص الأسئلة، والاعتماد على سؤال حو
على الرغم من إظهار قيم واعدة للتطبيقات المصب، فإن توليد السؤال والإجابة معا يتم استكشافها. في هذه الورقة، نقدم مهمة جديدة تستهدف توليد زوج الإجابة على الأسئلة من الصور المرئية. لا يتطلب عدم توليد أزواج حول الإجابات المتنوعة فقط ولكن أيضا الحفاظ على ا
يقارن تقييم نماذج الرد على الأسئلة التوضيحية حول التوقعات النموذجية. ومع ذلك، اعتبارا من اليوم، فإن هذه المقارنة تعتمد في الغالب معجمية، وبالتالي تفتقد الإجابات التي لا تحتوي على تداخل جذري ولكن لا تزال مماثلة متشابهة دلالة، وبالتالي علاج الإجابات ال
على الرغم من الأداء الممتاز في مهام مثل الإجابة على الأسئلة، تظل الهيغات القائمة على المحولات حساسة للمغوصات النحوية والسياقية. توفر إعادة صياغة الأسئلة (QP) حلا واعدا كوسيلة لزيادة مجموعات البيانات الحالية. تتضمن التحديات الرئيسية لنماذج QP الحالية
نقوم بدراسة استرجاع الأجابة المتعددة، وهي مشكلة غير استكشافية تتطلب استرجاع المقاطع لتغطية إجابات مميزة متعددة لسؤال معين. تتطلب هذه المهمة نمذجة مشتركة للممرات المستردة، حيث يجب ألا تسترجع النماذج مرارا وتكرارا الممرات التي تحتوي على نفس الإجابة بتك