ترغب بنشر مسار تعليمي؟ اضغط هنا

Covid-19 الأدب المعرفة الرسم البياني البناء والتدقيق

COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation

311   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لمكافحة Covid-19، يحتاج كلا من الأطباء والعلماء إلى هضم كمية شاسعة من المعرفة الطبية الحيوية ذات الصلة في الأدب لفهم آلية المرض والوظائف البيولوجية ذات الصلة.لقد قمنا بتطوير إطار اكتشاف رواية وشامل للمعرفة، Covid-KG لاستخراج عناصر المعرفة بالوسائط المتعددة المحتلة الجميلة (الكيانات والعلاقات والأحداث) من الأدبيات العلمية.ثم نستغل الرسوم البيانية المعرفة بالوسائط المتعددة المبنية (KGS) على الإجابة على السؤال وتوليد التقارير، باستخدام المخدرات تسديدها كدراسة حالة.يوفر إطار عملنا أيضا جمل سياقية مفصلة، فرعية فرعية، وبرقراطية المعرفة كدليل.جميع البيانات، KGS، تقارير.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تقدم هذه الورقة النتائج الأولية للمشروع الجاري الذي يحلل الجسم المتنامي للبحث العلمي الذي نشر حول جائحة CovID-19.في هذا البحث، يتم استخدام نموذج دلالي للأغراض العامة لتعليق دفعة من 500 جمل تم اختيارها يدويا من Cord-19 Corpus.بعد ذلك، تم تصميم وتقييم خط أنابيب تعدين النص الأساسي من خلال مجموعة كبيرة من جمل 100،959.نقدم تحليلا نوعيا للحقائق الأكثر إثارة للاهتمام استخراجها تلقائيا وتسليط الضوء على خطوط التنمية المستقبلية المحتملة.تظهر النتائج الأولية أن النماذج الدلالية للأغراض العامة هي أداة مفيدة لاكتشاف معرفة غرامة المحبوس في كورسا الوثائق العلمية الكبيرة.
نقترح التصور الدلالي كطريقة تحليلية بصرية لغوية.يمكنها تمكين الاستكشاف والاكتشاف على مجموعات البيانات الكبيرة للشبكات المعقدة من خلال استغلال دلالات العلاقات فيها.ينطوي ذلك على استخراج المعلومات، وتطبيق عمليات الحد من المعلمات، وبناء تمثيل البيانات ا لهرمية وتصميم التصور.نقدم أيضا نظام التصور القابل للبحث والتفاعل في Covid-Semviz المرافق للاستكشاف عن بيانات Covid-19 لإظهار تطبيق طريقةنا المقترحة.في دراسات المستخدمين، وجد المستخدمون أن CAVID-Semviz المدعوم بالتصور الدقيق مفيدة من حيث إيجاد المعلومات ذات الصلة واكتشاف جمعيات غير معروفة.
ولدت جائحة Covid-19 هيئة متنوعة من الأدبيات العلمية تحديا في التنقل، وتحفيز الاهتمام بالأدوات الآلية للمساعدة في العثور على معرفة مفيدة.نحن نتابع بناء قاعدة المعرفة (KB) من الآليات --- مفهوم أساسي في جميع أنحاء العلوم، والذي يشمل الأنشطة والوظائف وال علاقات السببية، بدءا من العمليات الخلوية إلى الآثار الاقتصادية.استخراج هذه المعلومات من اللغة الطبيعية للأوراق العلمية من خلال تطوير مخطط واسع موحد يضرب التوازن بين الأهمية والاتساع.نبحث عن مجموعة بيانات من الآليات مع مخططنا وتدريب نموذج لاستخراج علاقات الآلية من الأوراق.توضح تجاربنا فائدة KB لدينا في دعم البحث العلمي متعدد التخصصات على أدب CovID-19، مما يتفوق على البحث البارز PubMed في دراسة ذات خبراء سريريين.محرك البحث لدينا، مجموعة البيانات والرمز متاحة للجمهور.
يعمل العمل المسبق على جيل البيانات إلى النص، ومهمة تحويل الكلام الرسم البياني (KG) ثلاث مرات إلى نص طبيعي، يركز على مجموعات البيانات القياسية الخاصة بالمجال. ومع ذلك، في هذه الورقة، فإننا ننفذنا اللغة الإنجليزية بأكملها Wikidata KG، ومناقشة التحديات الفريدة المرتبطة بمجال واسع ومجموع واسع النطاق. نوضح كذلك بأنه لفظي كجم شامل ومكون من كجم مثل Wikidata يمكن استخدامه لدمج KGS الهيكلية واللغات الطبيعية. على عكس العديد من البنيات التي تم تطويرها لدمج هاتين المصدرين، فإن نهجنا يحول كجم إلى نص طبيعي، مما يسمح له بالدمج بسلاسة في نماذج اللغة الحالية. إنه يحمل مزايا أخرى لتحسين الدقة الواقعية وتقليل السمية في نموذج اللغة الناتج. نقوم بتقييم هذا النهج عن طريق زيادة عملية استرجاع النموذج لغوي استرجاع وإظهار تحسينات كبيرة على مهام المعرفة المكثفة في المجال المفتوح وكثير المعرفة LAMA.
تعكس العلاقات في معظم الرسوم البيانية المعارف التقليدية (KGS) فقط الاتصالات الثابتة والواقعية، ولكنها تفشل في تمثيل الأنشطة الديناميكية وتغير الدولة حول الكيانات. في هذه الورقة، نؤكد على أهمية دمج الأحداث في تعلم تمثيل KG، واقتراح نموذج Eventke Event ke Eventke المحسن للحدث. على وجه التحديد، نظرا لل KG الأصلية، فإننا ندمج أول عقود حدث من خلال بناء شبكة غير متجانسة، حيث يتم توزيع العقد الكيانية وعقد الحدث على جانبي الشبكة بين روابط الوسيطة في الحدث. ثم نستخدم علاقات كيان الكيان من الروابط الزمنية KG والأحداث الزمنية الأصلية إلى الكيان والكيان الداخلي والوقت على التوالي. نقوم بتصميم طريقة تمرير رسائل مفيدة وتستند إلى الرواية، والتي يتم إجراؤها على كيان كيان وكيان الحدث وحدث الأحداث لفيد معلومات الحدث في AGBeddings KG. تظهر النتائج التجريبية على مجموعات البيانات في العالم الحقيقي أن الأحداث يمكن أن تحسن إلى حد كبير جودة AGEDDINGS KG على مهام متعددة المصب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا