ترغب بنشر مسار تعليمي؟ اضغط هنا

اختيار طبقة لينة مع التعلم التلوي لنقل الصفر القصير عبر اللغات

Soft Layer Selection with Meta-Learning for Zero-Shot Cross-Lingual Transfer

455   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا لغات اللغات الصفرية هي مهمة غير تافهة.في هذه الورقة، نقترح رواية ميتا المحسن إلى طبقات ناعمة في طبقات النموذج المدرب مسبقا لتجميدها أثناء الضبط.نحن ندرب ميتا المحسن عن طريق محاكاة سيناريو نقل الصفر بالرصاص.تشير النتائج على الاستدلال اللغوي المتبادل اللغوي إلى أن نهجنا يحسن على خط الأساس البسيط للضبط و X-Maml (Nooralahzadeh et al.، 2020).



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت نماذج متعددة اللغات المدربة مسبقا أداء ملحوظا على تعلم التحويل عبر اللغات.تم تدريب بعض النماذج متعددة اللغات مثل Mbert، مدربة مسبقا على Corpora غير المسبق، وبالتالي لا يمكن تضمين تضمينات لغات مختلفة في النماذج بشكل جيد للغاية.في هذه الورقة، نهدف إلى تحسين أداء نقل اللغات المتبادل الصفر عن طريق اقتراح مهمة تدريبية مسبقا تسمى نموذج محاذاة Word-Exchange (Weal)، والذي يستخدم معلومات المحاذاة الإحصائية كمعرفة مسبقة لتوجيه الكلمة عبر اللغاتتنبؤ.نحن نقيم نموذجنا في مهمة مهام الفهم لقراءة الجهاز متعدد اللغات ومهمة واجهة اللغة الطبيعية XNLI.تظهر النتائج أن Weam يمكن أن يحسن بشكل كبير من الأداء الصفر بالرصاص.
تشفير لغة متعددة اللغات المدربة مسبقا، مثل Bert متعدد اللغات و XLM-R، إظهار إمكانات كبيرة للتحويل الصفر - عبر اللغات. ومع ذلك، فإن هذه اللوائح متعددة اللغات لا تحيي بالتحديد الكلمات والعبارات عبر اللغات. على وجه الخصوص، يتطلب محاذاة التعلم في مساحة ا لتضمين متعددة اللغات عادة على مستوى الجملة أو المستوى الموازي على مستوى Word، وهي مكلفة يتم الحصول عليها لغات الموارد المنخفضة. بديل هو جعل التشفير متعددة اللغات أكثر قوة؛ عند ضبط التشفير باستخدام المهمة المصدرة للمهمة، نربط التشفير لتتسامح مع الضوضاء في المساحات التضمين السياقية بحيث لا تتماشى تمثيلات اللغات المختلفة بشكل جيد، لا يزال بإمكان النموذج تحقيق أداء جيد على الصفر بالرصاص عبر اللغات نقل. في هذا العمل، نقترح استراتيجية تعليمية لتدريب النماذج القوية عن طريق رسم الروابط بين الأمثلة الخصومة وحالات فشل النقل الصفرية عبر اللغات. نعتمد اثنين من أساليب التدريب القوية المستخدمة على نطاق واسع، والتدريب الخصوم والتنعيم العشوائي، لتدريب النموذج القوي المرغوب فيه. توضح النتائج التجريبية أن التدريب القوي يحسن نقل صفرية عبر اللغات على مهام تصنيف النص. التحسن هو أكثر أهمية في إعداد النقل المتبادل المعمم، حيث ينتمي زوج جمل المدخلات إلى لغتين مختلفة.
حققت المحولات التي تم تدريبها مسبقا على شركة متعددة اللغات، مثل MBERT و XLM-ROBERTA، قدرات نقل متبقية مثيرة للإعجاب. في إعداد نقل الطلقة الصفرية، يتم استخدام بيانات التدريب الإنجليزية فقط، ويتم تقييم النموذج الدقيق على لغة مستهدفة أخرى. على الرغم من أن هذا يعمل بشكل جيد بشكل مدهش، فقد تمت ملاحظة تباين كبير في الأداء اللغوي المستهدف بين مختلف عمليات التشغيل الدقيقة، وفي إعداد الطلقة الصفرية، لا توجد بيانات تطوير اللغة المستهدفة متاحة للتحديد بين نماذج متعددة ذات الضبط. اعتمد العمل المسبق على بيانات Dev الإنجليزية لتحديد بين النماذج التي تم ضبطها بشكل جيد مع معدلات التعلم المختلفة وعدد الخطوات وغيرها من أنواع التشعبات، والتي غالبا ما تؤدي إلى اختيارات فرعية نفسها. في هذه الورقة، نوضح أنه من الممكن تحديد نماذج أفضل باستمرار عند توفر كميات صغيرة من البيانات المشروحة بلغات محورية إضافية. نقترح نهجا للتعلم الآلي للاختيار النموذجي الذي يستخدم التمثيلات الداخلية للأنظمة ذات الطراز الدقيق للتنبؤ بقدراتها المتبادلة. في تجارب شاملة، نجد أن هذه الطريقة تختار باستمرار نماذج أفضل من بيانات التحقق من صحة اللغة الإنجليزية عبر عشرين لغة (بما في ذلك 8 لغات منخفضة الموارد)، وغالبا ما تحقق النتائج التي تتميز باختيار نموذج باستخدام بيانات تطوير اللغة المستهدفة.
نقدم متعدد اليوراء، مجموعة بيانات جديدة متعددة اللغات لتصنيف الموضوع للوثائق القانونية. تضم DataSet قوانين الاتحاد الأوروبي 65 ألف (EU)، والتي ترجمت رسميا في 23 لغة، مشروحا بالملصقات المتعددة من تصنيف Eurovoc. نسلط الضوء على تأثير المنفأة الزمنية الا نجراف وأهمية التسلسل الزمني، بدلا من الانقسامات العشوائية. نستخدم DataSet كاختبار لنقل صفرية عبر اللغات، حيث استغلنا المستندات التدريبية المشروح بلغة واحدة (مصدر) لتصنيف المستندات بلغة أخرى (الهدف). نجد أن ضبط النموذج المحدد المتعدد اللغتين (XLM-Roberta، MT5) في لغة مصدر واحدة يؤدي إلى نسيان كارثي من المعرفة متعددة اللغات، وبالتالي، فإن تحويل صفر ضعيف إلى لغات أخرى. استراتيجيات التكيف، وهي استراتيجيات دقيقة، محولات، معترفيت، LNFIT، اقترحت في الأصل تسريع الضبط الجميل للمهام النهائية الجديدة، والمساعدة في الاحتفاظ بالمعرفة متعددة اللغات من الاحتجاج، وتحسين نقل اللغات الصفر قليلا، ولكن تأثيرها يعتمد أيضا على ذلك على النموذج المحدد مسبقا يستخدم وحجم مجموعة التسمية.
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي ة فقط بلغة موارد عالية، بينما تحتاج إلى الإجابة على أسئلة متعددة اللغات دون أي بيانات معدنية باللغات المستهدفة. يتم تشغيل نهج مباشر إلى نماذج متعددة اللغات المدربة مسبقا (على سبيل المثال، MBERT) للنقل عبر اللغات، ولكن هناك فجوة كبيرة من الأداء KGQA بين المصدر واللغات المستهدفة. في هذه الورقة، نستمسى تحريض معجم ثنائي اللغة دون مقابل (BLI) لخريطة الأسئلة التدريبية في لغة المصدر في تلك الموجودة في اللغة المستهدفة مثل بيانات التدريب المعزز، والتي تتحل إلى عدم تناسق اللغة بين التدريب والاستدلال. علاوة على ذلك، نقترح استراتيجية تعليمية عدائية لتخفيف اضطراب بناء الجملة في البيانات المعززة، مما يجعل النموذج يميل إلى كل من اللغة والبنيات الاستقلال. وبالتالي، فإن نموذجنا يضيق الفجوة في تحويل صفرية عبر اللغات. التجارب على مجموعة بيانات KGQA متعددة اللغات مع 11 لغة موارد صفرية تحقق من فعاليتها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا