تأخذ مهمة نقل النمط (النمط هنا بمعنى "هنا" مع العديد من الجوانب بما في ذلك التسجيل، وهيكل الجملة، واختيار المفردات) إجراء إدخال النص وإعادة كتابةها في نمط مستهدف محدد يحافظ على المعنى، ولكن تغيير نمط نص المصدر لمطابقة ذلك من الهدف. يعتمد الكثير من الأبحاث الموجودة في هذه المهمة على استخدام مجموعات البيانات المتوازية. في هذا العمل، نوظف نتائج مؤخرا في نمذجة اللغة المتقاطعة غير المتبادلة (XLM) والترجمة الآلية لنقل النمط أثناء التعامل مع بيانات الإدخال كما غير إجمالي. أولا، نوضح أن إضافة تضمين المحتوى "" إلى XLM والتي تلتقط مجموعة الموضوعات المحددة للإنسان يمكن أن تحسن الأداء على الطراز الأساسي. غالبا ما تعتمد تقييم نقل النمط على المقاييس المصممة للترجمة الآلية التي تلقت انتقاد مدى ملاءمتها لهذه المهمة. كمساهمة ثانية، نقترح استخدام مجموعة من الأنماط الكلاسيكية ككمل مفيد للتقييم. نقوم باختيار بعض هذه التدابير وتشمل هذه في تحليل نتائجنا.
The style transfer task (here style is used in a broad authorial'' sense with many aspects including register, sentence structure, and vocabulary choice) takes text input and rewrites it in a specified target style preserving the meaning, but altering the style of the source text to match that of the target. Much of the existing research on this task depends on the use of parallel datasets. In this work we employ recent results in unsupervised cross-lingual language modeling (XLM) and machine translation to effect style transfer while treating the input data as unaligned. First, we show that adding content embeddings'' to the XLM which capture human-specified groupings of subject matter can improve performance over the baseline model. Evaluation of style transfer has often relied on metrics designed for machine translation which have received criticism of their suitability for this task. As a second contribution, we propose the use of a suite of classical stylometrics as a useful complement for evaluation. We select a few such measures and include these in the analysis of our results.
المراجع المستخدمة
https://aclanthology.org/
في معظم الحالات، فإن الافتقار إلى Corpora الموازي يجعل من المستحيل مباشرة على تدريب النماذج الخاضعة للإشراف لمهمة نقل نمط النص.في هذه الورقة، نستكشف خوارزميات التدريب التي تقوم بدلا من ذلك تحسين وظائف المكافآت التي تنظر صراحة في جوانب مختلفة من النوا
تستند نماذج نقل النمط غير المزروعة بشكل رئيسي إلى نهج التعلم الاستقرائي، والذي يمثل النمط كمعلمات أو معلمات فك الترميز، أو معلمات تمييزية، وتطبق مباشرة هذه القواعد العامة لحالات الاختبار. ومع ذلك، فإن عدم وجود Corpus الموازي يعيق قدرة طرق التعلم الاس
ينطوي نقل نمط النص على إعادة كتابة محتوى الجملة المصدر بأسلوب مستهدف.على الرغم من وجود عدد من المهام النمط مع البيانات المتاحة، فقد كانت هناك مناقشة منهجية محدودة حول كيفية توصيل مجموعات بيانات نمط النص مع بعضها البعض.ومع ذلك، من المحتمل أن يكون لهذا
في تصنيف النص عبر اللغات، يطلب من أن البيانات التدريبية الخاصة بمهام المهام في لغات مصدر عالية الموارد متوفرة، حيث تكون المهمة مطابقة لتلك لغة مستهدفة منخفضة الموارد. ومع ذلك، يمكن أن يكون جمع هذه البيانات التدريبية غير ممكنة بسبب تكلفة العلامات وخصا
تعلم تمثيل كامن جيد ضروري لنقل نمط النص، والذي يولد جملة جديدة عن طريق تغيير سمات جملة معينة مع الحفاظ على محتواها.تعتمد معظم الأعمال السابقة تمثيل تمثيل كامن Disentangled تعلم تحقيق نقل النمط.نقترح خوارزمية نقل نمط النص الجديد مع تمثيل كامن متشابكا،