ترغب بنشر مسار تعليمي؟ اضغط هنا

UANTWERP في مهمة Semeval-2021: تمتد Spans، تكديس نهج مستوى Word ثنائي للكشف عن SPAN SPAN

UAntwerp at SemEval-2021 Task 5: Spans are Spans, stacking a binary word level approach to toxic span detection

308   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توضح هذه الورقة النظام الذي طوره مركز أنتويرب للعلوم الإنسانية الرقمية والنقد الأدبي [UANTWERP] للكشف عن السامة.استخدمنا مجموعة تعميم مكدسة من خمسة نماذج مكونة، مع تفسيرات مميزة للمهمة.حاولت نماذج التنبؤ بتسمم سمية الكلمات الثنائية بناء على تسلسل النجرام، بينما تم تدريب 3 نماذج قاسية قائمة على أساس أن توقع ملصقات رمزية سامة بناء على الرموز التسلسلية الكاملة.تم فرك تنبؤات النماذج الخمس داخل نموذج LSTM.بالإضافة إلى وصف النظام، نقوم بإجراء تحليل الأخطاء لاستكشاف الأداء النموذجي فيما يتعلق بالميزات النصية.سجل النظام الموصوف في هذه الورقة 0.6755 واحتل المرتبة 26.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تقدم هذه الورقة تقديم نظامنا إلى المهمة 5: تمثل المسابقة السامة من مسابقة Semeval-2021.تهدف المنافسة إلى اكتشاف الجرف الذي يصنع سامة سامة.في هذه الورقة، نوضح نظامنا للكشف عن المواقف السامة، والتي تشمل توسيع نطاق التدريب السام الذي تم تعيينه مع تفسيرا ت نموذجية غير مرغوية للطراز المحلي (الجير)، وطيب الروبيرتا الناعم للكشف، وتحليل الأخطاء.وجدنا أن إطعام النموذج مع مجموعة تدريبية موسعة باستخدام تعليقات Reddit من السماد المستقطب والسمية مع الجير على رأس تصنيف الانحدار اللوجستي يمكن أن يساعد روبرتا على تعلم أكثر دقة التعرف على الأمور السامة.حققنا درجة F1 المستفادة من 0.6715 على مرحلة الاختبار.تظهر نتائجنا الكمية والنوعية أن التنبؤات من نظامنا يمكن أن تكون ملحقا جيدا لشروح مجموعة تدريب الذهب.
تقدم هذه الورقة التقديم الخاص بنا إلى مهمة Semeval-2021 5: الكشف عن الأمور السامة.الغرض من هذه المهمة هو اكتشاف المواقف التي تجعل النص ساما، وهو عمل معقد لعدة أسباب.أولا، بسبب الذاتية الجوهرية للسمية، وثانيا، بسبب السمية لا تأتي دائما من كلمات مفردة مثل الإهانات أو التمثيل، ولكن في بعض الأحيان من التعبيرات بأكملها تشكلت بكلمات قد لا تكون سامة بشكل فردي.بعد هذه الفكرة التركيز على كل من الكلمات المفردة وتعبيرات متعددة الكلمة، ندرس تأثير استخدام نموذج مستعمل متعدد العميم، والذي يستخدم embeddings من طبقات مختلفة لتقدير السمية النهائية لكل رمزية.تظهر النتائج الكمية لدينا أن استخدام المعلومات من أعماق متعددة يعزز أداء النموذج.أخيرا، نقوم أيضا بتحليل أفضل نموذج لدينا نوعيا.
تقدم هذه المقالة وصف نظام فريق المحور، الذي يفسر العمل ذي الصلة والنتائج التجريبية لمشاركة فريقنا في مهمة Semeval 2021 5: الكشف السام يمتد.تأتي بيانات هذه المهمة المشتركة من بعض المشاركات على الإنترنت.الهدف المهمة هو تحديد المحتوى السام الوارد في هذه البيانات النصية.نحتاج إلى إيجاد فترة النص السام في البيانات النصية بدقة قدر الإمكان.في نفس المنصب، قد يكون النص السام فقيرا واحدا أو فقرات متعددة.يستخدم فريقنا مخطط التصنيف بناء على مستوى Word لإنجاز هذه المهمة.النظام الذي اعتدنا على تقديم النتائج هو Albert + Bilstm + CRF.مؤشر تقييم النتيجة لتقديم المهمة هو درجة F1، والنتيجة النهائية للنتيجة التنبؤية لمجموعة الاختبار المقدمة من فريقنا هي 0.6640226029.
في السنوات الأخيرة، أدى الاستخدام الواسع للوسائط الاجتماعية إلى زيادة في جيل من المحتوى السام والهجومي على المنصات عبر الإنترنت. استجابة، عملت منصات وسائل التواصل الاجتماعي على تطوير أساليب الكشف التلقائي وتوظيف المشرفين البشري للتعامل مع هذا الطوفان من المحتوى الهجومي. في حين تم تطبيق العديد من النماذج الإحصائية للحدث من بين الفنون للكشف عن الوظائف السامة، لا توجد سوى عدد قليل من الدراسات التي تركز على الكشف عن الكلمات أو التعبيرات التي تشكل هجوما بعد. هذا يحفز تنظيم مهمة Semeval-2021 5: مسابقة الكشف عن المسافات السامة، التي قدمت المشاركين مع مجموعة بيانات تحتوي على شرح سام يمتد في المشاركات الإنكليزية. في هذه الورقة، نقدم دخول WLV-RIT لمهمة Semeval-2021 5. يحقق نموذجنا الأفضل أداء محول العصبي 0.68 F1 درجة. علاوة على ذلك، نقوم بتطوير إطار مفتوح المصدر للكشف المتعدد اللغات عن الممثل الهجومي، أي القنص، بناء على المحولات العصبية التي تكتشف تمديد السام في النصوص.
غالبا ما تكون اللغة السامة موجودة في المنتديات عبر الإنترنت، خاصة عندما تنشأ السياسة وغيرها من الموضوعات الاستقطابية، ويمكن أن تؤدي إلى أن يصبحوا محبطين من الانضمام إلى المحادثات أو الاستمرار فيها.في هذه الورقة، نستخدم البيانات التي تتألف من تعليقات مع مؤشرات النص السام المسمى لتدريب RNN لردع الألغام التي تجعلها أجزاء من التعليقات تجعلها سامة، والتي يمكن أن تساعد المشرفين عبر الإنترنت.نقارن النتائج باستخدام مجموعة البيانات الأصلية ومجموعة معدات، وكذلك نماذج Gru مقابل LSTM RNN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا