تقدم هذه الورقة التقديم الخاص بنا إلى مهمة Semeval-2021 5: الكشف عن الأمور السامة.الغرض من هذه المهمة هو اكتشاف المواقف التي تجعل النص ساما، وهو عمل معقد لعدة أسباب.أولا، بسبب الذاتية الجوهرية للسمية، وثانيا، بسبب السمية لا تأتي دائما من كلمات مفردة مثل الإهانات أو التمثيل، ولكن في بعض الأحيان من التعبيرات بأكملها تشكلت بكلمات قد لا تكون سامة بشكل فردي.بعد هذه الفكرة التركيز على كل من الكلمات المفردة وتعبيرات متعددة الكلمة، ندرس تأثير استخدام نموذج مستعمل متعدد العميم، والذي يستخدم embeddings من طبقات مختلفة لتقدير السمية النهائية لكل رمزية.تظهر النتائج الكمية لدينا أن استخدام المعلومات من أعماق متعددة يعزز أداء النموذج.أخيرا، نقوم أيضا بتحليل أفضل نموذج لدينا نوعيا.
This paper presents our submission to SemEval-2021 Task 5: Toxic Spans Detection. The purpose of this task is to detect the spans that make a text toxic, which is a complex labour for several reasons. Firstly, because of the intrinsic subjectivity of toxicity, and secondly, due to toxicity not always coming from single words like insults or offends, but sometimes from whole expressions formed by words that may not be toxic individually. Following this idea of focusing on both single words and multi-word expressions, we study the impact of using a multi-depth DistilBERT model, which uses embeddings from different layers to estimate the final per-token toxicity. Our quantitative results show that using information from multiple depths boosts the performance of the model. Finally, we also analyze our best model qualitatively.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نصف نظامنا المستخدمة في مهمة Semeval 2021 5: الكشف عن الأمور السامة.ينتهك نظامنا المقترح من مشكلة مهمة تصنيف رمزية.قمنا بتدريب نموذجنا للعثور على كلمات سامة وتسلسل يمتد إلى التنبؤ باليوفق السام في غضون جملة.نحن نطبات نماذج اللغة المدرب
تتطلب مهمة الكشف عن المسافة السامة في Semeval-2021 المشاركين الذين يتعين على المشاركين التنبؤ بالوظائف السامة التي كانت مسؤولة عن الملصق السام للوظائف.يمكن معالجة المهمة كمصموع تسلسل إشراف، باستخدام بيانات التدريب مع يمتد سامة الذهب المقدمة من المنظم
تصف هذه الورقة مشاركة فريق سيناء في المهمة 5: الكشف عن الأمور السامة التي تتكون من تحديد المواقف التي تجعل النص سام.على الرغم من أن العديد من الموارد والأنظمة قد تم تطويرها حتى الآن في سياق اللغة الهجومية، ركزت كل من التوضيحية والمهام بشكل رئيسي على
اكتشاف المواقف السامة - اكتشاف سمية المحتويات في حبيبتي الرموز - أمر حاسم للاعتدال الفعال للمناقشات عبر الإنترنت.تتمثل النهج الأساسي في هذه المشكلة في استخدام نموذج المحول في إضافة رأس تصنيف رمزي إلى طراز اللغة وضبط الطبقات الدقيقة مع مجموعة بيانات ا
في السنوات الأخيرة، أدى الاستخدام الواسع للوسائط الاجتماعية إلى زيادة في جيل من المحتوى السام والهجومي على المنصات عبر الإنترنت. استجابة، عملت منصات وسائل التواصل الاجتماعي على تطوير أساليب الكشف التلقائي وتوظيف المشرفين البشري للتعامل مع هذا الطوفان