إن التنبؤ بصعوبة المفردات الخاصة بالمجال هي مهمة مهمة نحو فهم أفضل للنطاق، وتعزيز التواصل بين الأشخاص الخبراء والخبراء.نقوم بالتحقيق في مركبات الأسماء المغلقة الألمانية والتركيز على تفاعل الميزات المعجمية القائمة على المركب (مثل التردد والإنتاجية) والميزات المستندة إلى المصطلحات (المتناقضة لغة خاصة بالمجال واللغة العامة) عبر تمثيلات الكلمات والصفوفات المصنفة.تكمل تجارب التنبؤ لدينا رؤى من التصنيف باستخدام (أ) ميزات مصممة يدويا لتوصيف الوالدين وتشكيل المركب و (ب) مجمعات Word Adgentdings.نجد أنه بالنسبة للتمييز الثنائي الواسع في التردد المركزي باللغة العامة "VS. الصعب الصعب" كافية، ولكن بالنسبة للتمييز الأكثر غرامة من أربعة فئات من الدرجة الأولى، فمن الأهمية بمكان تضمين ميزات الحد من الناحية المتعاوية والمركب والميزات المكونة.
Predicting the difficulty of domain-specific vocabulary is an important task towards a better understanding of a domain, and to enhance the communication between lay people and experts. We investigate German closed noun compounds and focus on the interaction of compound-based lexical features (such as frequency and productivity) and terminology-based features (contrasting domain-specific and general language) across word representations and classifiers. Our prediction experiments complement insights from classification using (a) manually designed features to characterise termhood and compound formation and (b) compound and constituent word embeddings. We find that for a broad binary distinction into easy' vs. difficult' general-language compound frequency is sufficient, but for a more fine-grained four-class distinction it is crucial to include contrastive termhood features and compound and constituent features.
المراجع المستخدمة
https://aclanthology.org/
قدم الصفات مثل الثقيلة (كما هو الحال في الأمطار الغزيرة) والرياح (كما في يوم عاصف) القيم المحتملة لشدة السمات ومناخها على التوالي. لا تتحقق السمات نفسها بشكل علني وهناها هذه المنطقة الضالة. في حين يمكن استنتاج هذه السمات بسهولة من قبل البشر، فإن تصني
تعد Word Embeddings تمثيلات قوية تشكل أساس العديد من هياكنة معالجة اللغة الطبيعية، سواء باللغة الإنجليزية ولدا في لغات أخرى.للحصول على مزيد من البصائل في Adgeddings Word، نستكشف استقرارها (على سبيل المثال، تتداخل بين أقرب جيران من كلمة في مسافات مختل
بناء نظام الدعم الفني التلقائي هو مهمة مهمة ولكن التحدي.من الناحية النظرية، للإجابة على سؤال المستخدم في منتدى فني، يتعين على خبير بشري استرداد المستندات ذات الصلة أولا، ثم اقرأها بعناية لتحديد مقتطف الإجابة.على الرغم من النجاح الهائل، فقد حقق الباحث
أصبحت نماذج لغة ملثم بسرعة قياسي فعلي عند معالجة النص. في الآونة الأخيرة، اقترح العديد من الأساليب زيادة إثراء تمثيلات Word مع مصادر المعرفة الخارجية مثل الرسوم البيانية المعرفة. ومع ذلك، يتم وضع هذه النماذج وتقييمها في إعداد أحادي فقط. في هذا العمل،
تستخدم مصطلح خطط الترجغ على نطاق واسع في معالجة اللغة الطبيعية واسترجاع المعلومات. على وجه الخصوص، فإن وزن المصطلح هو الأساس لاستخراج الكلمات الرئيسية. ومع ذلك، هناك عدد قليل نسبيا دراسات التقييم التي ألقت الضوء على نقاط القوة وأوجه القصور في كل مخطط