ﻻ يوجد ملخص باللغة العربية
The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensate
Two-dimensionality of the scattering events in a Bose-Einstein condensate introduces a logarithmic dependence on density in the coupling constant entering a mean-field theory of the equilibrium density profile, which becomes dominant as the s-wave sc
Quantum Monte Carlo (QMC) simulations and the Local Density Approximation (LDA) are used to map the constant particle number (canonical) trajectories of the Bose Hubbard Hamiltonian confined in a harmonic trap onto the $(mu/U,t/U)$ phase diagram of t
Using the finite-temperature path integral Monte Carlo method, we investigate dilute, trapped Bose gases in a quasi-two dimensional geometry. The quantum particles have short-range, s-wave interactions described by a hard-sphere potential whose core
We show that the change of the fluctuation spectrum near the quantum critical point (QCP) may result in the continuous change of critical exponents with temperature due to the increase in the effective dimensionality upon approach to QCP. The latter