ﻻ يوجد ملخص باللغة العربية
We show that the change of the fluctuation spectrum near the quantum critical point (QCP) may result in the continuous change of critical exponents with temperature due to the increase in the effective dimensionality upon approach to QCP. The latter reflects the crossover from thermal fluctuations white noise mode to the quantum fluctuations regime. We investigate the critical dynamics of an exemplary system obeying the Bose-Einstein employing the Keldysh-Schwinger approach and develop the renormalization group technique that enables us to obtain analytical expressions for temperature dependencies of critical exponents.
We study the dynamical response of a system to a sudden change of the tuning parameter $lambda$ starting (or ending) at the quantum critical point. In particular we analyze the scaling of the excitation probability, number of excited quasiparticles,
A quasi one--dimensional system of trapped, repulsively interacting atoms (e.g., an ion chain) exhibits a structural phase transition from a linear chain to a zigzag structure, tuned by reducing the transverse trap potential or increasing the particl
Recently, a hybrid percolation transitions (HPT) that exhibits both a discontinuous transition and critical behavior at the same transition point has been observed in diverse complex systems. In spite of considerable effort to develop the theory of H
The characterization of entanglement is a central problem for the study of quantum many-body dynamics. Here, we propose the quantum Fisher information as a useful tool for the study of multipartite-entanglement dynamics in many-body systems. We illus
A numerical method, suitable for the simulation of the time evolution of quantum spin models of arbitrary lattice dimension, is presented. The method combines sampling of the Wigner function with evolution equations obtained from the Bogoliubov-Born-