ﻻ يوجد ملخص باللغة العربية
Using the finite-temperature path integral Monte Carlo method, we investigate dilute, trapped Bose gases in a quasi-two dimensional geometry. The quantum particles have short-range, s-wave interactions described by a hard-sphere potential whose core radius equals its corresponding scattering length. The effect of both the temperature and the interparticle interaction on the equilibrium properties such as the total energy, the density profile, and the superfluid fraction is discussed. We compare our accurate results with both the semi-classical approximation and the exact results of an ideal Bose gas. Our results show that for repulsive interactions, (i) the minimum value of the aspect ratio, where the system starts to behave quasi-two dimensionally, increases as the two-body interaction strength increases, (ii) the superfluid fraction for a quasi-2D Bose gas is distinctly different from that for both a quasi-1D Bose gas and a true 3D system, i.e., the superfluid fraction for a quasi-2D Bose gas decreases faster than that for a quasi-1D system and a true 3D system with increasing temperature, and shows a stronger dependence on the interaction strength, (iii) the superfluid fraction for a quasi-2D Bose gas lies well below the values calculated from the semi-classical approximation, and (iv) the Kosterlitz-Thouless transition temperature decreases as the strength of the interaction increases.
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensate
By using a renormalization group analysis, we study the effect of interparticle interactions on the critical temperature at which the Berezinskii-Kosterlitz-Thouless (BKT) transition occurs for Bose-Einstein condensates loaded at finite temperature i
Motivated by recent observations of phase-segregated binary Bose-Einstein condensates, we propose a method to calculate the excess energy due to the interface tension of a trapped configuration. By this method one should be able to numerically reprod
We explored the dynamics of how a Bose-Einstein condensate collapses and subsequently explodes when the balance of forces governing the size and shape of the condensate is suddenly altered. A condensates equilibrium size and shape is strongly affecte
We examine the phase diagram of a Bose-Einstein condensate of atoms, interacting with an attractive pseudopotential, in a quadratic-plus-quartic potential trap rotating at a given rate. Investigating the behavior of the gas as a function of interacti