ﻻ يوجد ملخص باللغة العربية
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensates of boson atoms in two distinct hyperfine spin states. The mean-field description breaks down as the system approaches the transition from the miscible side. An effective spin description clarifies the ferromagnetic nature of the transition. We show that a difference in the scattering lengths for the bosons in the same spin state leads to an effective internal magnetic field. The conditions at which the internal magnetic field vanishes (i.e., equal values of the like-boson scattering lengths) is a special point. We show that the long range density fluctuations are suppressed near that point while the effective spin exhibits the long-range fluctuations that characterize critical points. The zero-temperature system exhibits critical opalescence with respect to long wavelength waves of impurity atoms that interact with the bosons in a spin-dependent manner.
An ultralow-temperature binary mixture of Bose-Einstein condensates adsorbed at an optical wall can undergo a wetting phase transition in which one of the species excludes the other from contact with the wall. Interestingly, while hard-wall boundary
We detail the use of simple machine learning algorithms to determine the critical Bose-Einstein condensation (BEC) critical temperature $T_text{c}$ from ensembles of paths created by path-integral Monte Carlo (PIMC) simulations. We quickly overview c
We describe the ground state of a large, dilute, neutral atom Bose- Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as impurity) in the polaron regime where the BEC density respon
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials h