ترغب بنشر مسار تعليمي؟ اضغط هنا

Canonical Trajectories and Critical Coupling of the Bose-Hubbard Hamiltonian in a Harmonic Trap

57   0   0.0 ( 0 )
 نشر من قبل George Batrouni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum Monte Carlo (QMC) simulations and the Local Density Approximation (LDA) are used to map the constant particle number (canonical) trajectories of the Bose Hubbard Hamiltonian confined in a harmonic trap onto the $(mu/U,t/U)$ phase diagram of the uniform system. Generically, these curves do not intercept the tips of the Mott insulator (MI) lobes of the uniform system. This observation necessitates a clarification of the appropriate comparison between critical couplings obtained in experiments on trapped systems with those obtained in QMC simulations. The density profiles and visibility are also obtained along these trajectories. Density profiles from QMC in the confined case are compared with LDA results.

قيم البحث

اقرأ أيضاً

The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate a nd low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.
We study the monopole (breathing) mode of a finite temperature Bose-Einstein condensate in an isotropic harmonic trap recently developed by Lobser et al. [Nat.~Phys., textbf{11}, 1009 (2015)]. We observe a nonexponential collapse of the amplitude of the condensate oscillation followed by a partial revival. This behavior is identified as being due to beating between two eigenmodes of the system, corresponding to in-phase and out-of-phase oscillations of the condensed and noncondensed fractions of the gas. We perform finite temperature simulations of the system dynamics using the Zaremba-Nikuni-Griffin methodology [J.~Low Temp.~Phys., textbf{116}, 277 (1999)], and find good agreement with the data, thus confirming the two mode description.
We report on the transport of mixed quantum degenerate gases of bosonic 87Rb and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The samples are transported over a distance of 6 mm to the geometric center of the anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented by a small modification of the QUIC trap and is free of losses and heating. It allows all experiments using QUIC traps to use the highly homogeneous magnetic fields that can be created in the center of a QUIC trap and improves the optical access to the atoms, e.g., for experiments with optical lattices. This mechanism may be cascaded to cover even larger distances for applications with quantum degenerate samples.
156 - Ulli Pohl , Sayak Ray , 2021
We investigate the temperature-dependent behavior emerging in the vicinity of the superfluid (SF) to Mott insulator (MI) transition of interacting bosons in a two-dimensional optical lattice, described by the Bose-Hubbard model. The equilibrium phase diagram at finite temperatures is computed by means of the cluster mean-field theory (CMF) where the effect of non-local correlations is analyzed systematically by finite-size scaling of the cluster size. The phase diagram exhibits a rich structure including a transition and a crossover of the SF and MI phases respectively to a normal fluid (NF) state at finite temperature. In order to characterize these phases, and the NF transition and crossover scales, we calculate, in addition to the condensate amplitude, the superfluid fraction, sound velocity and compressibility. The phase boundaries obtained by CMF with finite-size scaling agree quantitatively with quantum Monte Carlo (QMC) results as well as with experiments. The von Neumann entanglement entropy of a cluster exhibits critical enhancement near the SF-MI quantum critical point (QCP). We also discuss the behavior of the transition lines near this QCP at the particle-hole symmetric point located at the tip of a Mott lobe as well as away from particle-hole symmetry.
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived prethermal regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا