ﻻ يوجد ملخص باللغة العربية
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is a promising electrochemical energy conversion strategy. Ruthenium (Ru) is an efficient catalyst with a desirable cost for HER, however, the sluggish H2O dissociation process, due to the low H2O adsorption on its surface, currently hampers the performances of this catalyst in alkaline HER. Herein, we demonstrate that the H2O adsorption improves significantly by the construction of Ru-O-Mo sites. We prepared Ru/MoO2 catalysts with Ru-O-Mo sites through a facile thermal treatment process and assessed the creation of Ru-O-Mo interfaces by transmission electron microscope (TEM) and extended X-ray absorption fine structure (EXAFS). By using Fourier-transform infrared spectroscopy (FTIR) and H2O adsorption tests, we proved Ru-O-Mo sites have tenfold stronger H2O adsorption ability than that of Ru catalyst. The catalysts with Ru-O-Mo sites exhibited a state-of-the-art overpotential of 16 mV at 10 mA cm-2 in 1 M KOH electrolyte, demonstrating a threefold reduction than the previous bests of Ru (59 mV) and commercial Pt (31 mV) catalysts. We proved the stability of these performances over 40 hours without decline. These results could open a new path for designing efficient and stable catalysts.
Large scale production of hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious nickel-based catalysts work well at
The design of efficient electrocatalysts for electrochemical water splitting with minimal amount of precious metal is crucial to attain renewable and sustainable energy conversion. Here, we report the use of a network of CdSe branched colloidal nanoc
With a large-scale usage of portable electric appliances, a high demand for increasingly high density energy storage devices has emerged. MoO3 has, in principle, a large potential as negative electrode material in supercapacitive devices, due to high
Very recently, it has been shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor [1]. We will present here the preparation and characterizatio
Lithium niobate (LiNbO$_3$, LN) plays an important role in holographic storage, and molybdenum doped LiNbO$_3$ (LN:Mo) is an excellent candidate for holographic data storage. In this paper, the basic features of Mo doped LiNbO$_3$, such as the site p