ﻻ يوجد ملخص باللغة العربية
Lithium niobate (LiNbO$_3$, LN) plays an important role in holographic storage, and molybdenum doped LiNbO$_3$ (LN:Mo) is an excellent candidate for holographic data storage. In this paper, the basic features of Mo doped LiNbO$_3$, such as the site preference, electronic structure, and the lattice distortions, have been explored from first-principles calculations. Mo substituting Nb with its highest charge state of +6 is found to be the most stable point defect form. The energy levels formed by Mo with different charge states are distributed in the band gap, which are responsible for the absorption in the visible region. The transition of Mo in different charge states implies molybdenum can serve as a photorefractive center in LN:Mo. In addition, the interactions between Mo and intrinsic or extrinsic point defects are also investigated in this work. Intrinsic defects $tt V_{Li}^-$ could cause the movement of the $tt Mo_{Nb}^+$ energy levels. The exploration of Mo, Mg co-doped LiNbO$_3$ reveals that although Mg ion could not shift the energy level of Mo, it can change the distribution of electrons in Mo and Mg co-doped LN (LN:Mo,Mg) which help with the photorefractive phenomenon.
Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally-efficient continuum solvation methodologies. We develop a model for the double lay
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is a promising electrochemical energy conversion strategy. Ruthenium (Ru) is an efficient catalyst with a desirable cost for HER, however, the sluggish H2O dissociation process, due
With a large-scale usage of portable electric appliances, a high demand for increasingly high density energy storage devices has emerged. MoO3 has, in principle, a large potential as negative electrode material in supercapacitive devices, due to high
Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis