ترغب بنشر مسار تعليمي؟ اضغط هنا

Amorphous Mo-Ta oxide nanotubes for long-term stable Mo oxide based supercapacitors

64   0   0.0 ( 0 )
 نشر من قبل Patrik Schmuki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With a large-scale usage of portable electric appliances, a high demand for increasingly high density energy storage devices has emerged. MoO3 has, in principle, a large potential as negative electrode material in supercapacitive devices, due to high charge densities that can be obtained from its reversible redox reactions. Nevertheless, the extremely poor electrochemical stability of MoO3 in aqueous electrolytes prevents a practical use in high capacitance devices. In this work, we describe how to overcome this severe stability issue by forming amorphous molybdenum oxide/tantalum oxide nanotubes by anodic oxidation of a Mo-Ta alloy. The presence of a critical amount of Ta-oxide (> 20 at-%) prevents the electrochemical decay of the MoO3 phase and thus yields an extremely high stability. Due to the protection provided by tantalum oxide, no capacitance losses are measureable after 10000 charg-ing/discharging cycles.

قيم البحث

اقرأ أيضاً

High finesse optical cavities of current interferometric gravitational-wave detectors are significantly limited in sensitivity by laser quantum noise and coating thermal noise. The thermal noise is associated with internal energy dissipation in the m aterials that compose the test masses of the interferometer. Our understanding of how the internal friction is linked to the amorphous material structure is limited due to the complexity of the problem and the lack of studies that span over a large range of materials. We present a systematic investigation of amorphous metal oxide and Ta$_2$O$_5$-based mixed oxide coatings to evaluate their suitability for low Brownian noise experiments. It is shown that the mechanical loss of metal oxides is correlated to their amorphous morphology, with continuous random network materials such as SiO$_2$ and GeO$_2$ featuring the lowest loss angles. We evaluated different Ta$_2$O$_5$-based mixed oxide thin films and studied the influence of the dopant in the optical and elastic properties of the coating. We estimated the thermal noise associated with high-reflectance multilayer stacks that employ each of the mixed oxides as the high index material. We concluded that the current high index material of TiO$_2$-doped Ta$_2$O$_5$ is the optimal choice for reduced thermal noise among Ta$_2$O$_5$-based mixed oxide coatings with low dopant concentrations.
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is a promising electrochemical energy conversion strategy. Ruthenium (Ru) is an efficient catalyst with a desirable cost for HER, however, the sluggish H2O dissociation process, due to the low H2O adsorption on its surface, currently hampers the performances of this catalyst in alkaline HER. Herein, we demonstrate that the H2O adsorption improves significantly by the construction of Ru-O-Mo sites. We prepared Ru/MoO2 catalysts with Ru-O-Mo sites through a facile thermal treatment process and assessed the creation of Ru-O-Mo interfaces by transmission electron microscope (TEM) and extended X-ray absorption fine structure (EXAFS). By using Fourier-transform infrared spectroscopy (FTIR) and H2O adsorption tests, we proved Ru-O-Mo sites have tenfold stronger H2O adsorption ability than that of Ru catalyst. The catalysts with Ru-O-Mo sites exhibited a state-of-the-art overpotential of 16 mV at 10 mA cm-2 in 1 M KOH electrolyte, demonstrating a threefold reduction than the previous bests of Ru (59 mV) and commercial Pt (31 mV) catalysts. We proved the stability of these performances over 40 hours without decline. These results could open a new path for designing efficient and stable catalysts.
Complex oxide thin films and heterostructures exhibit a profusion of exotic phenomena, often resulting from the intricate interplay between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the study of their properties in the absence of interface effects. In this work, we create ultrathin membranes of strongly correlated materials and demonstrate top-down fabrication of nanomechanical resonators made out of ce{SrTiO3} and ce{SrRuO3}. Using laser interferometry, we successfully actuate and measure the motion of the nanodrum resonators. By measuring their temperature-dependent mechanical response, we observe signatures of structural phase transitions in ce{SrTiO3}, which affect the strain and mechanical dissipation in the resonators. This approach can be extended to investigate phase transitions in a wide range of materials. Our study demonstrates the feasibility of integrating ultrathin complex oxide membranes for realizing nanoelectromechanical systems on arbitrary substrates.
A simple method has been used to synthesize nanostructured La0.5Ba0.5CoO3 (LBCO) powders, by confining chemical precursors into the pores of polycarbonate filters. The proposed method allows us to obtain powders formed by crystallites of different si zes, it is scalable and does not involve the use of sophisticated deposition techniques. The area specific polarization resistance of symmetrical cells was studied to analyze the electrochemical behavior of the LBCO nanostructures as cathodes for Solid-Oxide Fuel Cells. We show that the performance is improved by reducing the size of the crystallites, obtaining area specific resistance values of 0.2 Wcm2 at 700C, comparable with newly developed cathodes using novel deposition techniques.
The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magneti c and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا