ﻻ يوجد ملخص باللغة العربية
Very recently, it has been shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor [1]. We will present here the preparation and characterization of graphitic carbon nitride (g-C3N4) films on semiconducting substrates by thermal condensation of dicyandiamide precursor under inert gas conditions. Structural and surface morphological studies of the carbon nitride films suggest a high porosity of g-C3N4 thin film consisting of a network of nanocrystallites. Photo-electrochemical investigations show upon cathodic polarization light-induced hydrogen evolution for a wide range of proton concentrations in the aqueous electrolyte. Additionally, Synchrotron radiation based photoelectron spectroscopy has been applied to study the surface/near-surface chemical composition of the utilized g-C3N4 film photocathodes. For the first time it is shown that g-C3N4 films can be successfully applied as photoelectrochemical material for light induced hydrogen evolution. [1]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nature Mat. 2009, 8, 76-80.
In this work, we demonstrate that a well-established and facile ball milling approach using mixtures of commercial anatase nanoparticles and TiH2 introduces noble-metal-free photocatalytic H2 activity to titania. We characterize this synergistic effe
Black TiO2 has gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Among the outstanding features of the material is that certain synthesis processes lead to the formation of an intri
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is a promising electrochemical energy conversion strategy. Ruthenium (Ru) is an efficient catalyst with a desirable cost for HER, however, the sluggish H2O dissociation process, due
Based on first principles calculations, this study reveals that magnetism in otherwise non-magnetic materials can originate from the partial occupation of antibonding states. Since the antibonding wavefunctions are spatially antisymmetric, the spin w
The design of efficient electrocatalysts for electrochemical water splitting with minimal amount of precious metal is crucial to attain renewable and sustainable energy conversion. Here, we report the use of a network of CdSe branched colloidal nanoc