ﻻ يوجد ملخص باللغة العربية
In this paper, we study the task of hallucinating an authentic high-resolution (HR) face from an occluded thumbnail. We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN, which exploits facial geometry priors to replenish and upsample (8*) the occluded and tiny faces (16*16 pixels). Pro-UIGAN iteratively (1) estimates facial geometry priors for low-resolution (LR) faces and (2) acquires non-occluded HR face images under the guidance of the estimated priors. Our multi-stage hallucination network super-resolves and inpaints occluded LR faces in a coarse-to-fine manner, thus reducing unwanted blurriness and artifacts significantly. Specifically, we design a novel cross-modal transformer module for facial priors estimation, in which an input face and its landmark features are formulated as queries and keys, respectively. Such a design encourages joint feature learning across the input facial and landmark features, and deep feature correspondences will be discovered by attention. Thus, facial appearance features and facial geometry priors are learned in a mutual promotion manner. Extensive experiments demonstrate that our Pro-UIGAN achieves visually pleasing HR faces, reaching superior performance in downstream tasks, i.e., face alignment, face parsing, face recognition and expression classification, compared with other state-of-the-art (SotA) methods.
Existing face hallucination methods based on convolutional neural networks (CNN) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are
The cross-sensor gap is one of the challenges that have aroused much research interests in Heterogeneous Face Recognition (HFR). Although recent methods have attempted to fill the gap with deep generative networks, most of them suffer from the inevit
Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very
Most face super-resolution methods assume that low-resolution and high-resolution manifolds have similar local geometrical structure, hence learn local models on the lowresolution manifolds (e.g. sparse or locally linear embedding models), which are
With the recent advancement of deep convolutional neural networks, significant progress has been made in general face recognition. However, the state-of-the-art general face recognition models do not generalize well to occluded face images, which are